elementwise_op.h 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <string>
18
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
34 35

  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
36
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
37
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
39
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
40 41 42
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

C
chengduo 已提交
43 44 45 46 47 48 49 50 51 52 53
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("X").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("X").front(), ctx->GetInputsVarType("X").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Y").front(), ctx->GetInputsVarType("Y").front());

Q
Qiao Longfei 已提交
54 55
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
56
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
57
                      "Rank of first input must >= rank of second input.");
58 59

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
60
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
61
  }
62 63

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
64 65
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
66 67 68 69 70 71 72 73 74 75

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
76 77
};

C
chengduo 已提交
78 79 80 81 82 83
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
84 85 86
  }
};

G
gongweibao 已提交
87 88
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
89
  void Make() final {
C
caoying03 已提交
90 91
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
92
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
93
    AddAttr<int>("axis",
C
caoying03 已提交
94 95
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
96 97
        .SetDefault(-1)
        .EqualGreaterThan(-1);
98 99
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
Y
Yu Yang 已提交
100
    AddComment(string::Sprintf(R"DOC(
T
Tao Luo 已提交
101
Elementwise %s Operator
K
kexinzhao 已提交
102 103 104

The equation is:

Y
Yu Yang 已提交
105
$$%s$$
K
kexinzhao 已提交
106

L
Luo Tao 已提交
107 108
- $X$: a tensor of any dimension. 
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
109 110

There are two cases for this operator:
111

L
Luo Tao 已提交
112 113
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
114 115

For case 2:
116

L
Luo Tao 已提交
117 118 119 120 121
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index 
   for broadcasting $Y$ onto $X$. 
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of 
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
122

L
Luo Tao 已提交
123
For example:
124

125
  .. code-block:: python
G
gongweibao 已提交
126

127 128
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
129
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
130 131
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
132
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
133

L
Luo Tao 已提交
134 135
The inputs $X$ and $Y$ can carry the different LoD information. 
But the output only shares the LoD information with the input $X$.
K
kexinzhao 已提交
136

Y
Yu Yang 已提交
137 138
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
139 140 141
  }

 protected:
Y
Yu Yang 已提交
142
  virtual std::string GetName() const = 0;
C
chengduo 已提交
143

Y
Yu Yang 已提交
144
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
145 146 147 148 149 150 151
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
152
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
153 154 155 156 157 158 159 160
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
161 162

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
163
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
164

Q
Qiao Longfei 已提交
165 166 167
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
168 169
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
170
    }
Q
Qiao Longfei 已提交
171
    if (ctx->HasOutput(y_grad_name)) {
172 173
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
174 175
    }
  }
176 177

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
178
      const framework::ExecutionContext &ctx) const override {
179 180
    auto input_data_type = framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
181 182 183 184 185 186 187 188 189 190

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
191
};
192 193 194 195 196 197 198 199

// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
200
  void InferShape(framework::InferShapeContext *ctx) const override {
201 202 203 204 205
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
206 207
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
208 209 210 211
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
212 213 214

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
215 216 217 218
    }
  }
};

219 220 221
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
222 223
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
224 225
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
226
      auto &dout =
227 228 229 230 231 232
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

G
gongweibao 已提交
233 234
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
235

236 237 238 239 240 241 242 243 244 245 246
/*
*/

#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)                   \
  class kernel_type##GradMaker                                               \
      : public paddle::framework::SingleGradOpDescMaker {                    \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<paddle::framework::OpDesc> Apply() const override {      \
C
chengduo 已提交
247
      auto *op = new paddle::framework::OpDesc();                            \
248 249 250 251 252 253 254 255 256 257 258
      op->SetType(#kernel_type "_grad");                                     \
      op->SetInput("Y", Input("Y"));                                         \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
      op->SetAttrMap(Attrs());                                               \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      op->SetOutput(::paddle::framework::GradVarName("Y"), InputGrad("Y"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
  }

Y
Yu Yang 已提交
259 260 261 262 263 264 265 266 267
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
268
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
269 270
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
271 272 273 274 275 276 277 278 279 280 281 282 283 284

#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation, ...) \
  class __ElemwiseOp##op_type##Maker__                                 \
      : public ::paddle::operators::ElementwiseOpMaker {               \
   protected:                                                          \
    virtual std::string GetName() const { return op_name; }            \
    virtual std::string GetEquation() const { return equation; }       \
  };                                                                   \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,       \
                    __ElemwiseOp##op_type##Maker__,                    \
                    ::paddle::operators::ElementwiseOpInferVarType,    \
                    op_type##GradMaker);                               \
  REGISTER_OPERATOR(op_type##_grad,                                    \
                    ::paddle::operators::ElementwiseOpExplicitGrad)