distribute_transpiler.py 52.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18
import numpy as np
19

Y
Yancey1989 已提交
20
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
21
from .. import core, framework
T
typhoonzero 已提交
22 23 24
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
Y
Yancey1989 已提交
28 29 30
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
31 32


T
typhoonzero 已提交
33 34 35 36 37 38
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
39

T
typhoonzero 已提交
40 41
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
42 43


44
class UnionFind(object):
45
    """ Union-find data structure.
46

47
    Union-find is a data structure that keeps track of a set of elements partitioned
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


95 96 97 98
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


99
def split_dense_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
100
    """
101 102 103 104 105 106
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
107
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
108 109 110 111 112 113 114

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
115
        blocks (list[(varname, block_id, current_block_size)]): A list
116
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
117 118 119
    """
    blocks = []
    for var in var_list:
120
        split_count = service_count
T
typhoonzero 已提交
121 122 123 124
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
125
        if max_pserver_count < service_count:
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
135
        # update split_count after aligning
T
typhoonzero 已提交
136 137 138 139 140 141 142 143 144
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


145 146 147 148 149 150 151 152 153 154
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
169 170
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
171
                  trainer_id,
T
done  
typhoonzero 已提交
172 173 174
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
175
                  align_var_to_block=True,
Y
Yancey1989 已提交
176
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
177
                  sync_mode=True):
T
done  
typhoonzero 已提交
178
        """
T
typhoonzero 已提交
179 180 181 182 183 184 185 186 187
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
188 189
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width)
            if align_var_to_block is True
T
typhoonzero 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
217
        """
Y
Yancey1989 已提交
218
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
219 220
        if program is None:
            program = default_main_program()
221 222
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
223
        self.sync_mode = sync_mode
T
typhoonzero 已提交
224 225 226 227
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
228
        pserver_endpoints = pservers.split(",")
229
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
230
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
231
        ps_dispatcher = split_method(pserver_endpoints)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
254

255 256
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
257 258 259 260 261 262 263 264
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
265 266 267 268 269 270 271

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
272
                if grad.name != grad_var_name(self.table_name)
273 274 275 276 277 278
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
279
            if self.sync_mode:
280
                self.trainer_side_table_grad_list = [
281 282 283 284 285 286 287 288 289
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
290
                self.trainer_side_table_grad_list = [
291 292 293 294 295 296 297
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
298

299 300 301 302 303 304 305 306 307 308
        if align_var_to_block:
            grad_blocks = split_dense_variable(grad_list,
                                               len(pserver_endpoints))
            param_blocks = split_dense_variable(param_list,
                                                len(pserver_endpoints))
        else:
            # when we do NOT align var to block, we will always split params
            # grads into one block.
            grad_blocks = split_dense_variable(grad_list, 1)
            param_blocks = split_dense_variable(param_list, 1)
Y
update  
Yancey1989 已提交
309
        assert (len(grad_blocks) == len(param_blocks))
310

311 312 313 314
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
Y
update  
Yancey1989 已提交
315 316 317 318 319 320 321 322 323
        grad_var_mapping = self._create_vars_from_blocklist(
            program, grad_blocks, add_trainer_suffix=self.trainer_num > 1)
        grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            grad_param_mapping[grad_var_mapping[g_name][int(g_bid)]] =  \
                    param_var_mapping[p_name][int(p_bid)]

Y
Yancey1989 已提交
324
        # step 3: transpile trainer side program, insert recv op and send op.
325

326
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
327
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
328 329 330 331 332 333 334 335 336 337 338
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
339
        send_vars = []
340 341 342 343 344 345 346 347 348 349 350

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
        grad_var_mapping_items = grad_var_mapping.items()
        if not align_var_to_block:
            np.random.shuffle(grad_var_mapping_items)

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
351
            eplist = ps_dispatcher.dispatch(splited_vars)
352 353 354 355

            if not align_var_to_block:
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
356 357 358 359 360 361 362 363 364
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
365
                index += 1
Y
Yancey1989 已提交
366 367 368 369
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
370
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
371
                index=index + 1,
Y
Yancey1989 已提交
372
                type="send_vars",
Y
update  
Yancey1989 已提交
373
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
374 375 376 377 378
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
379 380
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
381 382 383 384 385

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
386
                outputs={},
Y
Yancey1989 已提交
387 388
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
389 390
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
391
                })
Y
Yancey1989 已提交
392 393 394

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
395 396 397
        for _, var in enumerate(send_vars):
            recv_vars.append(grad_param_mapping[var])
        ps_dispatcher.reset()
Y
Yancey1989 已提交
398 399
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
400
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
401 402
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
403

Y
Yancey1989 已提交
404 405 406 407 408 409 410 411 412
        for varname, splited_var in param_var_mapping.iteritems():
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
413 414 415 416 417
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
418

T
typhoonzero 已提交
419
        program.global_block().append_op(
Y
Yancey1989 已提交
420 421
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
422
            outputs={},
Q
qiaolongfei 已提交
423 424
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
425
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
426
            })
Y
Yancey1989 已提交
427

428
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
429
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
430 431
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
432
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
433
            program.global_block().append_op(
T
typhoonzero 已提交
434
                type="concat",
T
typhoonzero 已提交
435
                inputs={"X": splited_var},
T
typhoonzero 已提交
436
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
437
                attrs={"axis": 0})
T
typhoonzero 已提交
438

439
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
440 441
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
442
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
443

T
typhoonzero 已提交
444 445
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
446
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
447
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
448 449
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
450 451 452 453

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
454
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
455 456 457 458 459 460
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
461
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
462 463 464 465 466 467 468 469
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
470 471 472 473 474 475

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
476 477 478 479 480 481 482 483 484
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
485
            if self.sync_mode and self.trainer_num > 1:
486
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
487 488 489 490 491 492 493 494 495
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
496

Q
qiaolongfei 已提交
497
        # step 3
498
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
499 500 501
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
502
        # step 3.2
T
typhoonzero 已提交
503 504 505 506 507 508
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
509
        # step 3.3
T
typhoonzero 已提交
510
        # Iterate through the ops, and if an op and the optimize ops
511
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
512
        # append it into the sub program.
T
typhoonzero 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
529 530
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
531

Q
qiaolongfei 已提交
532
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
533
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
534
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
Y
Yancey 已提交
535
                                         self.origin_program)
T
typhoonzero 已提交
536 537 538
            else:
                self._append_pserver_non_opt_ops(block, op)

539
        # append lr decay ops to the child block if exists
540 541
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
542 543
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
544
            for _, op in enumerate(lr_ops):
545
                self._append_pserver_non_opt_ops(lr_decay_block, op)
546

T
typhoonzero 已提交
547
        # append op to the current block
Q
qiaolongfei 已提交
548
        grad_to_block_id = []
Q
qiaolongfei 已提交
549
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
550
        for idx, opt_op in enumerate(opt_op_on_pserver):
551
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
552 553
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
554
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
555
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
556 557

        # append global ops
558
        if global_ops:
Q
qiaolongfei 已提交
559 560 561
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
562 563
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
564 565 566 567 568 569 570 571 572

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

573 574 575 576
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
577
            table_opt_block = self._create_table_optimize_block(
578
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
579
            prefetch_block = self._create_prefetch_block(
580
                pserver_index, pserver_program, table_opt_block)
581 582 583 584 585 586 587 588 589

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
590 591 592 593 594 595
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
596
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
597
                "endpoint": endpoint,
598
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
599 600
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
601
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
602
            })
603

T
typhoonzero 已提交
604 605 606 607 608 609 610 611 612 613
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
614
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
628
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

661
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
662 663
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
710 711
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
712
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
713 714
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
730
                    delete_ops(program.global_block(), [op])
731 732 733
                    # break for loop
                    break

Y
Yancey1989 已提交
734
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
735 736 737
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
738
        table_grad_name = grad_var_name(self.table_name)
739 740 741 742 743 744 745 746 747 748
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
749
                    outputs={"Out": self.trainer_side_table_grad_list})
750 751 752
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
753
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
754 755 756 757 758 759
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
780
            type="lookup_sparse_table",
781 782 783 784 785 786 787 788 789 790 791
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
792
                                     pre_block_idx, grad_to_block_id):
793 794
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
795 796 797 798 799 800 801 802
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
803 804 805
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
806
            self.origin_program.global_block().vars[grad_var_name(
807
                self.table_name)])
808 809 810 811 812 813

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
814
        table_opt_block = pserver_program.create_block(pre_block_idx)
815 816 817
        # only support sgd now
        assert table_opt_op.type == "sgd"

818 819 820
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
821
            pserver_side_table_grad_list = [
822 823 824 825 826 827 828 829 830
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

831
            # append sum op for pserver_side_table_grad_list
832 833
            table_opt_block.append_op(
                type="sum",
834
                inputs={"X": pserver_side_table_grad_list},
835
                outputs={"Out": [grad_var]})
836 837
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
838
            origin_grad_name = grad_var.name
839 840
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
841 842
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
843
                                 " grad_var:" + grad_var.name)
844 845
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

861 862 863
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

864 865
        return table_opt_block

T
typhoonzero 已提交
866 867 868 869 870 871
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
872
        Create vars for each split.
T
typhoonzero 已提交
873 874
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
875 876 877 878
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
879 880
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
881
                from original var name to each var split.
T
typhoonzero 已提交
882
        """
883 884

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
885
        block_map = dict()
886

T
typhoonzero 已提交
887
        var_mapping = dict()
T
typhoonzero 已提交
888 889 890 891 892 893
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
894
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
895
            if len(splited) == 1:
896
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
897 898 899 900 901 902 903 904
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
905
                continue
T
typhoonzero 已提交
906 907

            var_mapping[varname] = []
T
typhoonzero 已提交
908 909 910 911
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
912

T
typhoonzero 已提交
913
            for i, block in enumerate(splited):
T
typhoonzero 已提交
914
                size = block[1]
T
typhoonzero 已提交
915 916 917 918
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
919
                new_var_name = ""
920
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
921 922 923 924 925
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
926
                var = program.global_block().create_var(
T
typhoonzero 已提交
927 928
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
929
                    dtype=orig_var.dtype,
930
                    type=orig_var.type,
T
typhoonzero 已提交
931
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
932
                var_mapping[varname].append(var)
T
typhoonzero 已提交
933
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
934
        return var_mapping
T
done  
typhoonzero 已提交
935

936 937 938 939 940 941 942 943 944 945 946
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
947 948 949 950 951 952 953
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
954
            persistable=persistable)
T
done  
typhoonzero 已提交
955

Y
Yancey1989 已提交
956
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
981

T
typhoonzero 已提交
982 983 984 985
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
986
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
1009 1010 1011 1012 1013
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
1014 1015
        else:
            orig_var_name = varname
T
typhoonzero 已提交
1016 1017
        return orig_var_name

1018
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
1019
                            grad_to_block_id, origin_program):
1020
        program = optimize_block.program
T
typhoonzero 已提交
1021
        pserver_block = program.global_block()
T
typhoonzero 已提交
1022
        new_inputs = dict()
T
typhoonzero 已提交
1023 1024
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1025
        for key in opt_op.input_names:
T
typhoonzero 已提交
1026 1027 1028
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
1029
                    if same_or_split_var(
T
typhoonzero 已提交
1030 1031
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
1032 1033 1034 1035 1036 1037
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
1038 1039
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
1040 1041
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
1042
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
1043
                    vars2merge = []
1044
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
1045 1046 1047 1048
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

1049
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
1050 1051 1052
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
1053
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1054 1055 1056 1057 1058
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1059
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1060

T
typhoonzero 已提交
1061 1062 1063 1064 1065
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1066
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1067 1068 1069 1070
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1071
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1072
                    name=param_block.name,
T
typhoonzero 已提交
1073
                    persistable=True,
T
typhoonzero 已提交
1074 1075 1076
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1077
            elif key == "LearningRate":
1078
                # learning rate variable has already be created by non-optimize op,
1079
                # don't create it once again.
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1091

T
typhoonzero 已提交
1092
        for key in opt_op.input_names:
1093 1094
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1095
                continue
1096
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1097 1098 1099 1100
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1101
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1102 1103 1104 1105 1106
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1107

1108
        # change output's ParamOut variable
1109 1110
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1111
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1112

1113
        optimize_block.append_op(
T
typhoonzero 已提交
1114 1115
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1116
            outputs=outputs,
T
typhoonzero 已提交
1117 1118
            attrs=opt_op.attrs)

1119 1120
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1121
        # Append the ops for parameters that do not need to be optimized/updated
1122 1123
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1124 1125 1126 1127
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1128
            for var in varlist:
1129 1130
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1131 1132 1133 1134 1135
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1136 1137
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1138

1139 1140 1141 1142 1143
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1144
                program.global_block().clone_variable(var)
1145

1146
        optimize_block.append_op(
T
typhoonzero 已提交
1147
            type=opt_op.type,
T
typhoonzero 已提交
1148 1149
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1150 1151
            attrs=opt_op.attrs)

1152 1153 1154 1155
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1169 1170
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1171
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1172
        op2_output_names = op2.desc.output_arg_names()
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1192
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1193 1194
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1195 1196 1197 1198 1199 1200 1201
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1202
        if op.input("Param")[0] in param_names:
1203 1204 1205
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1206
                param = op.input("Param")[0]
T
typhoonzero 已提交
1207
                if same_or_split_var(n, param) and n != param:
1208 1209 1210
                    return True
            return False

T
typhoonzero 已提交
1211
    def _get_input_map_from_op(self, varmap, op):
1212
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1225
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1247
        block = self.origin_program.global_block()
1248 1249 1250 1251 1252
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1266 1267
                    # we only need to append op for once
                    break
1268
        return lr_ops
Y
Yancey1989 已提交
1269 1270

    def _get_optimize_pass(self):
1271 1272 1273 1274 1275 1276
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1287 1288
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1289 1290 1291
            else:
                pass
        return opt_ops, params_grads
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False