top_k_op.cu 11.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/top_k_op.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/platform/assert.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/platform/cuda_device_function.h"
武毅 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
F
fengjiayi 已提交
28
  __device__ __forceinline__ Pair(T value, int64_t id) : v(value), id(id) {}
武毅 已提交
29

F
fengjiayi 已提交
30
  __device__ __forceinline__ void set(T value, int64_t id) {
武毅 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    v = value;
    id = id;
  }

  __device__ __forceinline__ void operator=(const Pair<T>& in) {
    v = in.v;
    id = in.id;
  }

  __device__ __forceinline__ bool operator<(const T value) const {
    return (v < value);
  }

  __device__ __forceinline__ bool operator<(const Pair<T>& in) const {
    return (v < in.v) || ((v == in.v) && (id > in.id));
  }

  __device__ __forceinline__ bool operator>(const Pair<T>& in) const {
    return (v > in.v) || ((v == in.v) && (id < in.id));
  }

  T v;
F
fengjiayi 已提交
53
  int64_t id;
武毅 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
};

template <typename T>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p,
                                      int beam_size) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int beam_size>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int MaxLength, int BlockSize>
138
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
武毅 已提交
139
                                              int beam_size, const T* src,
140 141
                                              bool* firstStep, bool* is_empty,
                                              Pair<T>* max, int dim,
武毅 已提交
142
                                              const int tid) {
143 144 145 146
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
武毅 已提交
147 148 149
      GetTopK<T, BlockSize>(topk, src, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
150 151
        if (k < MaxLength - (*beam)) {
          topk[k] = topk[k + *beam];
武毅 已提交
152
        } else {
153
          topk[k].set(-INFINITY, -1);
武毅 已提交
154 155
        }
      }
156 157
      if (!(*is_empty)) {
        GetTopK<T, BlockSize>(topk + MaxLength - *beam, src, tid, dim, *max,
武毅 已提交
158 159 160 161
                              length);
      }
    }

162
    *max = topk[MaxLength - 1];
163
    if ((*max).v == -1) *is_empty = true;
164
    *beam = 0;
武毅 已提交
165 166 167 168
  }
}

template <typename T, int MaxLength, int BlockSize>
169
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
武毅 已提交
170
                                              int beam_size, const T* val,
171 172
                                              int* col, bool* firstStep,
                                              bool* is_empty, Pair<T>* max,
武毅 已提交
173
                                              int dim, const int tid) {
174 175 176 177
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
武毅 已提交
178 179 180
      GetTopK<T, BlockSize>(topk, val, col, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
181 182
        if (k < MaxLength - *beam) {
          topk[k] = topk[k + *beam];
武毅 已提交
183
        } else {
184
          topk[k].set(-INFINITY, -1);
武毅 已提交
185 186
        }
      }
187 188
      if (!(*is_empty)) {
        GetTopK<T, BlockSize>(topk + MaxLength - *beam, val, col, tid, dim, max,
武毅 已提交
189 190 191 192
                              length);
      }
    }

193 194 195
    *max = topk[MaxLength - 1];
    if ((*max).v == -1) *is_empty = true;
    *beam = 0;
武毅 已提交
196 197 198 199 200 201
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
                                            Pair<T> topk[], T** topVal,
202
                                            int64_t** topIds, int* beam, int* k,
武毅 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                                            const int tid, const int warp) {
  while (true) {
    __syncthreads();
    if (tid < BlockSize / 2) {
      if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
        maxid[tid] = tid + BlockSize / 2;
      } else {
        maxid[tid] = tid;
      }
    }
    __syncthreads();
    for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
      if (tid < stride) {
        if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
          maxid[tid] = maxid[tid + stride];
        }
      }
      __syncthreads();
    }
    __syncthreads();

    if (tid == 0) {
      **topVal = sh_topk[maxid[0]].v;
      **topIds = sh_topk[maxid[0]].id;
      (*topVal)++;
      (*topIds)++;
    }
230 231
    if (tid == maxid[0]) (*beam)++;
    if (--(*k) == 0) break;
武毅 已提交
232 233 234
    __syncthreads();

    if (tid == maxid[0]) {
235 236
      if (*beam < MaxLength) {
        sh_topk[tid] = topk[*beam];
武毅 已提交
237 238
      }
    }
C
chengduoZH 已提交
239
    // NOTE(zcd): temporary solution
C
chengduoZH 已提交
240 241 242
    unsigned mask = 0u;
    CREATE_SHFL_MASK(mask, true);

武毅 已提交
243
    if (maxid[0] / 32 == warp) {
C
chengduoZH 已提交
244 245
      if (platform::CudaShuffleSync(mask, *beam, (maxid[0]) % 32, 32) ==
          MaxLength)
C
chengduoZH 已提交
246
        break;
武毅 已提交
247 248 249 250 251 252 253 254 255 256 257 258
    }
  }
}

/**
 * Each block compute one sample.
 * In a block:
 * 1. every thread get top MaxLength value;
 * 2. merge to sh_topk, block reduce and get max value;
 * 3. go to the second setp, until one thread's topk value is null;
 * 4. go to the first setp, until get the topk value.
 */
259

武毅 已提交
260
template <typename T, int MaxLength, int BlockSize>
F
fengjiayi 已提交
261
__global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
262 263
                             const T* src, int lds, int dim, int k,
                             int grid_dim, int num) {
武毅 已提交
264 265 266 267
  __shared__ Pair<T> sh_topk[BlockSize];
  const int tid = threadIdx.x;
  const int warp = threadIdx.x / 32;

268 269
  const int bid = blockIdx.x;
  for (int i = bid; i < num; i += grid_dim) {
Q
qingqing01 已提交
270 271 272 273
    int top_num = k;
    __shared__ int maxid[BlockSize / 2];
    T* out = output + i * output_stride;
    int64_t* inds = indices + i * k;
274 275 276 277 278 279
    Pair<T> topk[MaxLength];
    int beam = MaxLength;
    Pair<T> max;
    bool is_empty = false;
    bool firststep = true;

Q
qingqing01 已提交
280
    for (int j = 0; j < MaxLength; j++) {
281
      topk[j].set(-INFINITY, -1);
282
    }
Q
qingqing01 已提交
283
    while (top_num) {
284 285
      ThreadGetTopK<T, MaxLength, BlockSize>(
          topk, &beam, k, src + i * lds, &firststep, &is_empty, &max, dim, tid);
武毅 已提交
286

287
      sh_topk[tid] = topk[0];
Q
qingqing01 已提交
288 289
      BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &out, &inds,
                                           &beam, &top_num, tid, warp);
290
    }
武毅 已提交
291
  }
292 293 294 295 296 297 298 299 300 301 302
}

inline static int GetDesiredBlockDim(int dim) {
  if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
武毅 已提交
303 304 305
  }
}

306 307 308 309 310 311 312 313 314 315 316 317
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
  case (dim): {                        \
    constexpr auto kBlockDim = (dim);  \
    __VA_ARGS__;                       \
  } break

#define FIXED_BLOCK_DIM(...)                \
  FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__);  \
  FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)

武毅 已提交
318
template <typename T>
Y
Yu Yang 已提交
319
class TopkOpCUDAKernel : public framework::OpKernel<T> {
武毅 已提交
320 321 322
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
323
                   "It must use CUDAPlace.");
武毅 已提交
324 325 326 327 328 329 330 331
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");
    size_t k = static_cast<int>(ctx.Attr<int>("k"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // FIXME(typhoonzero): data is always converted to type T?
F
fengjiayi 已提交
332
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
武毅 已提交
333

Q
qingqing01 已提交
334 335 336 337 338
    framework::DDim inputdims = input->dims();
    const size_t input_height = framework::product(
        framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
    const size_t input_width = inputdims[inputdims.size() - 1];

武毅 已提交
339 340 341 342 343
    if (k > input_width) k = input_width;

    // NOTE: pass lds and dim same to input width.
    // NOTE: old matrix implementation of stride is different to eigen.
    // TODO(typhoonzero): refine this kernel.
344 345 346 347 348 349 350
    const int kMaxHeight = 2048;
    int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
    auto& dev_ctx = ctx.cuda_device_context();
    switch (GetDesiredBlockDim(input_width)) {
      FIXED_BLOCK_DIM(
          KeMatrixTopK<T, 5,
                       kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
Q
qingqing01 已提交
351 352
              output_data, k, indices_data, input_data, input_width,
              input_width, static_cast<int>(k), gridx, input_height));
353 354 355
      default:
        PADDLE_THROW("Error");
    }
武毅 已提交
356 357 358
  }
};

359 360 361
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM

武毅 已提交
362 363 364
}  // namespace operators
}  // namespace paddle

365 366
REGISTER_OP_CUDA_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel<float>,
                        paddle::operators::TopkOpCUDAKernel<double>);