“9b6abc12cd733648f62b95f329259a1ca3e6ef0e”上不存在“ppocr/utils/corpus/corpus.md”
conv_op_xpu.cc 9.4 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    Tensor* max_input = context.Output<Tensor>("MaxInput");
    Tensor* max_filter = context.Output<Tensor>("MaxFilter");
    max_input->mutable_data<T>(context.GetPlace());
    max_filter->mutable_data<T>(context.GetPlace());
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    const int win_h = static_cast<int>(filter.dims()[2]);
    const int win_w = static_cast<int>(filter.dims()[3]);
    PADDLE_ENFORCE_EQ(
        dilations[0] == 1 && dilations[1] == 1, true,
        platform::errors::InvalidArgument("XPU only support dilation == 1."));
    auto& dev_ctx = context.template device_context<DeviceContext>();
    PADDLE_ENFORCE_EQ(
        xpu::findmax(dev_ctx.x_context(), input->data<T>(), input->numel(),
                     max_input->data<T>()) == xpu::Error_t::SUCCESS,
X
xiaoting 已提交
53 54 55 56
        true, platform::errors::InvalidArgument(
                  "XPU conv kernel error,can not finde max_input,please "
                  "check whether Baidu Kunlun "
                  "Card is properly installed."));
X
xiaoting 已提交
57 58 59
    PADDLE_ENFORCE_EQ(
        xpu::findmax(dev_ctx.x_context(), filter.data<T>(), filter.numel(),
                     max_filter->data<T>()) == xpu::Error_t::SUCCESS,
X
xiaoting 已提交
60 61 62 63
        true, platform::errors::InvalidArgument(
                  "XPU conv kernel error,can not find max_filter,please "
                  "check whether Baidu Kunlun "
                  "Card is properly installed."));
X
xiaoting 已提交
64 65 66 67 68 69 70 71
    if (groups == 1) {
      int r = xpu::conv2d_forward_int16<float, float, float, float>(
          dev_ctx.x_context(), batch_size, img_c, img_h, img_w, f, win_h, win_w,
          strides[0], strides[1], paddings[0], paddings[1], dilations[0],
          dilations[1], groups, input->data<float>(), filter.data<float>(),
          output->data<float>(), nullptr, nullptr, xpu::Activation_t::LINEAR,
          // nullptr, nullptr);
          max_input->data<float>(), max_filter->data<float>());
X
xiaoting 已提交
72 73 74 75 76 77
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU conv kernel return wrong value[%d], "
                                     "please check whether Baidu Kunlun Card "
                                     "is properly installed.",
                                     r));
X
xiaoting 已提交
78 79 80 81 82 83 84
    } else {
      int r = xpu::conv2d_int16_with_group<float, float, float>(
          dev_ctx.x_context(), input->data<float>(), filter.data<float>(),
          output->data<float>(), batch_size, img_c, img_h, img_w, f, win_h,
          win_w, groups, strides[0], strides[1], paddings[0], paddings[1],
          // nullptr, nullptr);
          max_input->data<float>(), max_filter->data<float>());
X
xiaoting 已提交
85 86 87 88 89 90
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU conv kernel return wrong value[%d], "
                                     "please check whether Baidu Kunlun Card "
                                     "is properly installed.",
                                     r));
X
xiaoting 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
  }
};
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* max_input = context.Input<Tensor>("MaxInput");
    const Tensor* max_filter = context.Input<Tensor>("MaxFilter");
    Tensor* max_output_grad = context.Output<Tensor>("MaxOutputGrad");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
    const int batch_size = static_cast<int>(input->dims()[0]);
    PADDLE_ENFORCE_EQ(groups == 1, true, platform::errors::InvalidArgument(
                                             "XPU only support groups == 1."));
    PADDLE_ENFORCE_EQ(
        dilations[0] == 1 && dilations[1] == 1, true,
        platform::errors::InvalidArgument("XPU only support dilation == 1."));
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    const int win_h = static_cast<int>(filter.dims()[2]);
    const int win_w = static_cast<int>(filter.dims()[3]);
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
    }
    auto& dev_ctx = context.template device_context<DeviceContext>();
    max_output_grad->Resize({4});
    max_output_grad->mutable_data<T>(context.GetPlace());
    PADDLE_ENFORCE_EQ(
        xpu::findmax(dev_ctx.x_context(), output_grad->data<T>(),
                     output_grad->numel(),
                     max_output_grad->data<T>()) == xpu::Error_t::SUCCESS,
X
xiaoting 已提交
142 143 144 145 146
        true,
        platform::errors::External(
            "XPU conv kernel error, can not find max_output_grad, please check "
            "whether Baidu Kunlun Card is "
            "properly installed."));
X
xiaoting 已提交
147 148 149 150 151 152 153 154
    if (input_grad) {
      int r = xpu::conv2d_backward_int16(
          dev_ctx.x_context(), batch_size, img_c, img_h, img_w, f, win_h, win_w,
          strides[0], strides[1], paddings[0], paddings[1], dilations[0],
          dilations[1], groups, output_grad->data<float>(),
          filter.data<float>(), input_grad->data<float>(),
          // nullptr, nullptr,
          max_output_grad->data<float>(), max_filter->data<float>());
X
xiaoting 已提交
155 156 157 158 159 160
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU conv kernel return wrong value[%d], "
                                     "please check whether Baidu Kunlun Card "
                                     "is properly installed.",
                                     r));
X
xiaoting 已提交
161 162 163 164 165 166 167 168 169
    }
    if (filter_grad) {
      int r = xpu::conv2d_backward_weight_int16(
          dev_ctx.x_context(), batch_size, img_c, img_h, img_w, f, win_h, win_w,
          strides[0], strides[1], paddings[0], paddings[1], dilations[0],
          dilations[1], groups, output_grad->data<float>(),
          input->data<float>(), filter_grad->data<float>(),
          // nullptr, nullptr,
          max_output_grad->data<float>(), max_input->data<float>());
X
xiaoting 已提交
170 171 172 173 174 175
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU conv kernel return wrong value[%d], "
                                     "please check whether Baidu Kunlun Card "
                                     "is properly installed.",
                                     r));
X
xiaoting 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    }
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
// TODO(xingzhaolong): neon kernel for mobile
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d, ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif