test_rnn_op.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle.fluid.core as core
import paddle
import random
import sys

from op_test import OpTest

sys.path.append("./rnn")
25
from rnn_numpy import LSTM
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
from convert import get_params_for_net

random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()


class TestRNNOp(OpTest):

    def get_weight_names(self):
        weight_names = []
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.weight_{}".format(i, j))
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.bias_{}".format(i, j))
        return weight_names

    def setUp(self):
        self.op_type = "rnn"
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
        self.sequence_length = None if core.is_compiled_with_rocm(
        ) else np.array([12, 11, 10, 9, 8], dtype=np.int32)
        self.num_layers = 1
        self.is_bidirec = False
        self.mode = "LSTM"
        self.is_test = False
        self.dropout = 0.0
        self.set_attrs()

        self.direction_num = 2 if self.is_bidirec else 1
        direction = "bidirectional" if self.is_bidirec else "forward"
        seq_length = 12
        batch_size = 5
        input_size = 3
        hidden_size = 2

        input = np.random.uniform(low=-0.1,
                                  high=0.1,
                                  size=(seq_length, batch_size,
                                        input_size)).astype(self.dtype)
        if self.sequence_length is not None:
            input[11][1:][:] = 0
            input[10][2:][:] = 0
            input[9][3:][:] = 0
            input[8][4:][:] = 0

        rnn1 = LSTM(input_size,
                    hidden_size,
                    num_layers=self.num_layers,
                    time_major=True,
                    direction=direction,
                    dropout=self.dropout,
                    dtype=self.dtype)

        flat_w = get_params_for_net(rnn1)
        output, (last_hidden,
                 last_cell) = rnn1(input, sequence_length=self.sequence_length)

        if core.is_compiled_with_rocm():

            def rocm_rnn_get_place():
                places = [core.CUDAPlace(0)]
                return places

            self._get_places = rocm_rnn_get_place

        init_h = np.zeros((self.num_layers * self.direction_num, batch_size,
                           hidden_size)).astype(self.dtype)
        init_c = np.zeros((self.num_layers * self.direction_num, batch_size,
                           hidden_size)).astype(self.dtype)
        state_out = np.ndarray((300)).astype("uint8")

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'PreState': [('init_h', init_h), ('init_c', init_c)],
            'SequenceLength': self.sequence_length
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'PreState': [('init_h', init_h), ('init_c', init_c)],
            }
        self.attrs = {
            'dropout_prob': self.dropout,
            'is_bidirec': self.is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': self.num_layers,
            'mode': self.mode,
            'is_test': self.is_test
        }
        self.outputs = {
            'Out': output,
            "State": [('last_hidden', last_hidden), ('last_cell', last_cell)],
            'Reserve': np.ndarray((400)).astype("uint8"),
            'DropoutState': state_out
        }

    def test_output(self):
        self.check_output(no_check_set=['Reserve', 'DropoutState'])

    def set_attrs(self):
        pass

    def test_grad(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input', 'init_h', 'init_c']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list),
                            ['Out', 'last_hidden', 'last_cell'])

Y
YuanRisheng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def test_grad_only_input(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list),
                            ['Out', 'last_hidden', 'last_cell'])

    def test_grad_only_h(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['init_h']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list),
                            ['Out', 'last_hidden', 'last_cell'])

    def test_grad_only_c(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['init_c']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list),
                            ['Out', 'last_hidden', 'last_cell'])

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

class TestRNNOp1(TestRNNOp):

    def set_attrs(self):
        self.sequence_length = None


class TestRNNOp2(TestRNNOp):

    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True


class TestRNNOp3(TestRNNOp):

    def set_attrs(self):
        self.is_test = True
        self.sequence_length = None


class TestRNNOp4(TestRNNOp):

    def set_attrs(self):
        self.is_test = True
        self.sequence_length = None
        self.is_bidirec = True


class TestRNNOp5(TestRNNOp):

    def set_attrs(self):
        self.num_layers = 2


class TestRNNOp6(TestRNNOp):

    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True


class TestRNNOp7(TestRNNOp):

    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True
        self.is_test = True


class TestRNNOp8(TestRNNOp):

    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True
        self.sequence_length = None


class TestRNNOp9(TestRNNOp):

    def set_attrs(self):
        self.num_layers = 3


if __name__ == '__main__':
    unittest.main()