test_random_seed.py 18.9 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

import unittest
import paddle.fluid.generator as generator

import time  # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
L
Leo Chen 已提交
27 28 29
    #     """
    #     Test cases for cpu generator seed.
    #     """
Y
yaoxuefeng 已提交
30 31 32 33 34 35

    def test_generator_uniform_random_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
36
        gen = paddle.seed(12312321111)
Y
yaoxuefeng 已提交
37
        x = fluid.layers.uniform_random([10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
38

Y
yaoxuefeng 已提交
39
        st1 = gen.get_state()
40 41 42 43
        x1 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
44

Y
yaoxuefeng 已提交
45
        gen.set_state(st1)
L
Leo Chen 已提交
46
        print(gen.get_state())
47 48 49 50
        x2 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
51

C
cnn 已提交
52
        paddle.seed(12312321111)
53 54 55 56
        x3 = fluid.layers.uniform_random([10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
L
Leo Chen 已提交
57

Y
yaoxuefeng 已提交
58 59 60 61 62 63
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
64 65
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
66 67 68 69

    def test_generator_uniform_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
70
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
97 98
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
Y
yaoxuefeng 已提交
99 100
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

101 102 103
    def test_gen_dropout_dygraph(self):
        fluid.enable_dygraph()

C
cnn 已提交
104
        gen = paddle.seed(111111111)
105 106
        st = gen.get_state()
        # x = np.arange(1,101).reshape(2,50).astype("float32")
107 108 109 110
        x = fluid.layers.uniform_random([2, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
111 112 113
        y = fluid.layers.dropout(x, 0.5)
        gen.manual_seed(111111111)
        #gen.set_state(st)
114 115 116 117
        x1 = fluid.layers.uniform_random([2, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
118 119 120
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()
L
Leo Chen 已提交
121

122 123
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
124
            np.testing.assert_allclose(y_np, y1_np, rtol=1e-05)
125 126 127 128

    def test_gen_dropout_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
129
        gen = paddle.seed(123123143)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x_1 = fluid.layers.uniform_random(shape=[2, 10])
            y_1 = fluid.layers.dropout(x_1, 0.5)
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program, feed={}, fetch_list=[y_1])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program, feed={}, fetch_list=[y_1])
        out1_np = np.array(out1[0])
        out2_np = np.array(out2[0])
L
Leo Chen 已提交
146

147 148
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout static >>>>>>>")
149
            np.testing.assert_allclose(out1_np, out2_np, rtol=1e-05)
150 151 152 153 154

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
155
        gen = paddle.seed(12312321111)
156 157 158 159 160 161 162 163 164 165 166 167 168 169
        x = fluid.layers.gaussian_random([10], dtype="float32")
        st1 = gen.get_state()
        x1 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.set_state(st1)
        x2 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.manual_seed(12312321111)
        x3 = fluid.layers.gaussian_random([10], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
170 171
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
172 173 174 175

    def test_generator_gaussian_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
176
        gen = paddle.seed(123123143)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
            result_2 = fluid.layers.gaussian_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> gaussian random static >>>>>>>")
204 205
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
206 207
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
208 209 210 211 212 213
    def test_generator_randint_dygraph(self):
        """Test Generator seed."""
        gen = generator.Generator()

        fluid.enable_dygraph()

C
cnn 已提交
214
        gen = paddle.seed(12312321111)
215
        x = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
216
        st1 = gen.get_state()
217
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
218
        gen.set_state(st1)
219
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
220
        gen.manual_seed(12312321111)
221
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
222 223 224 225
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
226

Y
yaoxuefeng 已提交
227
        if not core.is_compiled_with_cuda():
228
            print(">>>>>>> randint dygraph >>>>>>>")
229 230
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
Y
yaoxuefeng 已提交
231

Z
zhangchunle 已提交
232
    def test_generator_uniform_random_static_1(self):
L
Leo Chen 已提交
233 234
        fluid.disable_dygraph()

C
cnn 已提交
235
        gen = paddle.seed(123123143)
L
Leo Chen 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
255

L
Leo Chen 已提交
256 257 258 259 260 261
            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
262 263
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
L
Leo Chen 已提交
264 265
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Z
zhangchunle 已提交
266
    def test_generator_randint_dygraph_1(self):
L
Leo Chen 已提交
267 268 269
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
270
        gen = paddle.seed(12312321111)
L
Leo Chen 已提交
271 272 273 274 275 276 277 278 279 280 281 282
        x = paddle.randint(low=1)
        st1 = gen.get_state()
        x1 = paddle.randint(low=1)
        gen.set_state(st1)
        x2 = paddle.randint(low=1)
        gen.manual_seed(12312321111)
        x3 = paddle.randint(low=1)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
        if not core.is_compiled_with_cuda():
283 284
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
L
Leo Chen 已提交
285 286

    def test_generator_ranint_static(self):
287 288
        fluid.disable_dygraph()

C
cnn 已提交
289
        gen = paddle.seed(123123143)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=10, shape=[3, 4])
            result_2 = paddle.randint(low=10, shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randint static >>>>>>>")
317 318
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
319 320 321 322 323 324 325
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_randperm_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
326
        gen = paddle.seed(12312321111)
327 328 329 330 331 332 333 334 335 336 337 338 339 340
        x = paddle.randperm(10)
        st1 = gen.get_state()
        x1 = paddle.randperm(10)
        gen.set_state(st1)
        x2 = paddle.randperm(10)
        gen.manual_seed(12312321111)
        x3 = paddle.randperm(10)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> randperm dygraph >>>>>>>")
341 342
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
343 344 345 346 347

    def test_generator_randperm_static(self):

        fluid.disable_dygraph()

C
cnn 已提交
348
        paddle.seed(123123143)
349 350 351 352 353 354 355 356 357 358 359 360 361 362

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randperm(10)
            result_2 = paddle.randperm(10)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
363

C
cnn 已提交
364
            paddle.seed(123123143)
365 366 367 368 369 370 371 372 373 374 375
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randperm static >>>>>>>")
376 377
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
378 379 380 381
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_sampling_id_dygraph(self):
        """Test Generator seed."""
C
cnn 已提交
382
        gen = paddle.seed(12312321111)
383 384 385 386

        fluid.enable_dygraph()

        gen.manual_seed(12312321111)
387 388 389 390
        x = fluid.layers.uniform_random([10, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
391
        y = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
392

393
        st1 = gen.get_state()
394 395 396 397
        x1 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
398
        y1 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
399

400
        gen.set_state(st1)
401 402 403 404
        x2 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
405
        y2 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
406

407
        gen.manual_seed(12312321111)
408 409 410 411
        x3 = fluid.layers.uniform_random([10, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
412 413 414 415 416 417 418 419 420
        y3 = fluid.layers.sampling_id(x)

        x_np = y.numpy()
        x1_np = y1.numpy()
        x2_np = y2.numpy()
        x3_np = y3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id dygraph >>>>>>>")
421 422
            np.testing.assert_allclose(x1_np, x2_np, rtol=1e-05)
            np.testing.assert_allclose(x_np, x3_np, rtol=1e-05)
423

Z
zhangchunle 已提交
424
    def test_generator_randperm_static_1(self):
425 426 427

        fluid.disable_dygraph()

C
cnn 已提交
428
        paddle.seed(123123143)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[10, 10])
            result_1 = fluid.layers.sampling_id(x)
            result_2 = fluid.layers.sampling_id(x)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
444

C
cnn 已提交
445
            paddle.seed(123123143)
446 447 448 449 450 451 452 453 454 455 456
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> sampling id static >>>>>>>")
457 458
                np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
                np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
459 460 461 462 463
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
464
        gen = paddle.seed(123123143)
465 466 467 468 469 470 471 472 473 474 475
        cur_state = gen.get_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
476 477
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
478 479 480
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
481 482
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0,
                                                             scale=2.0))
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        gen.manual_seed(123123143)
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id static >>>>>>>")
504 505
            np.testing.assert_allclose(out1_res1, out2_res1, rtol=1e-05)
            np.testing.assert_allclose(out1_res2, out2_res2, rtol=1e-05)
506 507
            self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
508 509 510

if __name__ == "__main__":
    unittest.main()