common.py 7.1 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import requests
Y
Yu Yang 已提交
16
import hashlib
Y
Yu Yang 已提交
17
import os
18
import errno
Y
Yu Yang 已提交
19
import shutil
H
Helin Wang 已提交
20
import sys
21 22
import importlib
import paddle.v2.dataset
23 24
import cPickle
import glob
25 26
import cPickle as pickle
import random
Y
Yu Yang 已提交
27

R
root 已提交
28 29 30 31
__all__ = [
    'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader',
    'convert'
]
Y
Yu Yang 已提交
32

33
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
Y
Yu Yang 已提交
34

35

36 37 38 39 40
# When running unit tests, there could be multiple processes that
# trying to create DATA_HOME directory simultaneously, so we cannot
# use a if condition to check for the existence of the directory;
# instead, we use the filesystem as the synchronization mechanism by
# catching returned errors.
41 42 43 44 45 46 47 48 49 50
def must_mkdirs(path):
    try:
        os.makedirs(DATA_HOME)
    except OSError as exc:
        if exc.errno != errno.EEXIST:
            raise
        pass


must_mkdirs(DATA_HOME)
Y
Yu Yang 已提交
51 52


53 54 55 56 57 58 59
def md5file(fname):
    hash_md5 = hashlib.md5()
    f = open(fname, "rb")
    for chunk in iter(lambda: f.read(4096), b""):
        hash_md5.update(chunk)
    f.close()
    return hash_md5.hexdigest()
60 61 62 63 64 65 66 67 68


def download(url, module_name, md5sum):
    dirname = os.path.join(DATA_HOME, module_name)
    if not os.path.exists(dirname):
        os.makedirs(dirname)

    filename = os.path.join(dirname, url.split('/')[-1])
    if not (os.path.exists(filename) and md5file(filename) == md5sum):
H
Helin Wang 已提交
69
        print "Cache file %s not found, downloading %s" % (filename, url)
70
        r = requests.get(url, stream=True)
H
Helin Wang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        total_length = r.headers.get('content-length')

        if total_length is None:
            with open(filename, 'w') as f:
                shutil.copyfileobj(r.raw, f)
        else:
            with open(filename, 'w') as f:
                dl = 0
                total_length = int(total_length)
                for data in r.iter_content(chunk_size=4096):
                    dl += len(data)
                    f.write(data)
                    done = int(50 * dl / total_length)
                    sys.stdout.write("\r[%s%s]" % ('=' * done,
                                                   ' ' * (50 - done)))
                    sys.stdout.flush()
87 88

    return filename
Y
Yi Wang 已提交
89 90


91 92 93 94 95 96 97 98
def fetch_all():
    for module_name in filter(lambda x: not x.startswith("__"),
                              dir(paddle.v2.dataset)):
        if "fetch" in dir(
                importlib.import_module("paddle.v2.dataset.%s" % module_name)):
            getattr(
                importlib.import_module("paddle.v2.dataset.%s" % module_name),
                "fetch")()
99 100


101 102 103 104 105 106 107 108 109 110 111 112 113
def fetch_all_recordio(path):
    for module_name in filter(lambda x: not x.startswith("__"),
                              dir(paddle.v2.dataset)):
        if "convert" in dir(
                importlib.import_module("paddle.v2.dataset.%s" % module_name)) and \
                not module_name == "common":
            ds_path = os.path.join(path, module_name)
            must_mkdirs(ds_path)
            getattr(
                importlib.import_module("paddle.v2.dataset.%s" % module_name),
                "convert")(ds_path)


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump):
    """
    you can call the function as:

    split(paddle.v2.dataset.cifar.train10(), line_count=1000,
        suffix="imikolov-train-%05d.pickle")

    the output files as:

    |-imikolov-train-00000.pickle
    |-imikolov-train-00001.pickle
    |- ...
    |-imikolov-train-00480.pickle

    :param reader: is a reader creator
    :param line_count: line count for each file
    :param suffix: the suffix for the output files, should contain "%d"
                means the id for each file. Default is "%05d.pickle"
    :param dumper: is a callable function that dump object to file, this
                function will be called as dumper(obj, f) and obj is the object
                will be dumped, f is a file object. Default is cPickle.dump.
    """
    if not callable(dumper):
        raise TypeError("dumper should be callable.")
    lines = []
    indx_f = 0
    for i, d in enumerate(reader()):
        lines.append(d)
        if i >= line_count and i % line_count == 0:
            with open(suffix % indx_f, "w") as f:
                dumper(lines, f)
                lines = []
                indx_f += 1
    if lines:
        with open(suffix % indx_f, "w") as f:
            dumper(lines, f)


def cluster_files_reader(files_pattern,
                         trainer_count,
                         trainer_id,
                         loader=cPickle.load):
    """
    Create a reader that yield element from the given files, select
    a file set according trainer count and trainer_id

    :param files_pattern: the files which generating by split(...)
    :param trainer_count: total trainer count
    :param trainer_id: the trainer rank id
    :param loader: is a callable function that load object from file, this
                function will be called as loader(f) and f is a file object.
                Default is cPickle.load
    """

    def reader():
        if not callable(loader):
            raise TypeError("loader should be callable.")
        file_list = glob.glob(files_pattern)
        file_list.sort()
        my_file_list = []
        for idx, fn in enumerate(file_list):
            if idx % trainer_count == trainer_id:
                print "append file: %s" % fn
                my_file_list.append(fn)
        for fn in my_file_list:
            with open(fn, "r") as f:
                lines = loader(f)
                for line in lines:
                    yield line

    return reader
G
gongweibao 已提交
185 186


187
def convert(output_path, reader, line_count, name_prefix):
G
gongweibao 已提交
188 189 190 191 192 193 194
    import recordio
    """
    Convert data from reader to recordio format files.

    :param output_path: directory in which output files will be saved.
    :param reader: a data reader, from which the convert program will read data instances.
    :param name_prefix: the name prefix of generated files.
G
gongweibao 已提交
195
    :param max_lines_to_shuffle: the max lines numbers to shuffle before writing.
G
gongweibao 已提交
196 197
    """

198 199
    assert line_count >= 1
    indx_f = 0
G
gongweibao 已提交
200

201
    def write_data(indx_f, lines):
G
gongweibao 已提交
202
        random.shuffle(lines)
203 204 205
        filename = "%s/%s-%05d" % (output_path, name_prefix, indx_f)
        writer = recordio.writer(filename)
        for l in lines:
206 207
            # FIXME(Yancey1989):
            # dumps with protocol: pickle.HIGHEST_PROTOCOL
208 209
            writer.write(cPickle.dumps(l))
        writer.close()
G
gongweibao 已提交
210

G
gongweibao 已提交
211 212 213
    lines = []
    for i, d in enumerate(reader()):
        lines.append(d)
214 215
        if i % line_count == 0 and i >= line_count:
            write_data(indx_f, lines)
G
gongweibao 已提交
216
            lines = []
217
            indx_f += 1
G
gongweibao 已提交
218
            continue
G
gongweibao 已提交
219

220
    write_data(indx_f, lines)