conv_cudnn_op.cu.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

Q
qiaolongfei 已提交
32 33
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
34 35

template <typename T>
36
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
37 38 39
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
40
                   "It must use CUDAPlace.");
武毅 已提交
41 42 43 44 45 46 47 48
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
49 50
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
51 52 53 54 55 56 57 58 59 60 61

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
62 63 64 65 66 67 68
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
69
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
70 71 72 73 74 75 76
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
77

C
chengduoZH 已提交
78 79 80 81 82 83
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
84 85

    int input_channels = input->dims()[1];
武毅 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
107

武毅 已提交
108 109
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
110
    int group_offset_out =
武毅 已提交
111
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
112 113 114 115 116 117 118 119 120 121
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
122 123
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
124 125 126 127 128 129 130 131 132 133

    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));
    // get workspace size able to allocate
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
    // Allocate on GPU memory
D
dzhwinter 已提交
134
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
135 136
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv forward ---------------------
K
Kexin Zhao 已提交
137 138
    typename platform::CudnnDataType<T>::ScalingParamType alpha = 1.0f,
                                                          beta = 0.0f;
武毅 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
    for (int i = 0; i < groups; i++) {
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
152
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
153 154 155
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
156
                   "It must use CUDAPlace.");
武毅 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
171 172
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
173 174 175 176 177 178 179 180 181

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
182 183 184 185 186 187 188
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
189
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
190 191 192 193 194 195 196
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
197

C
chengduoZH 已提交
198 199
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
200
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
201 202 203 204
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
205 206

    int input_channels = input->dims()[1];
武毅 已提交
207 208 209 210 211 212 213 214 215 216 217
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
218
    int output_grad_channels = filter->dims()[0];
武毅 已提交
219 220 221 222 223 224 225 226 227 228
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
229

武毅 已提交
230 231 232 233
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
234 235 236 237 238 239 240 241 242 243
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
244 245
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
246 247 248 249 250 251 252 253 254
    if (input_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              handle, cudnn_filter_desc,
              // dyDesc: Handle to the previously initialized input differential
              // tensor descriptor.
              cudnn_output_grad_desc, cudnn_conv_desc,
              // dxDesc: Handle to the previously initialized output tensor
              // descriptor.
武毅 已提交
255
              cudnn_input_desc,
武毅 已提交
256 257 258 259 260
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &data_algo));
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
261
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
282
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
283 284 285 286 287
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
288 289
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
290 291 292 293 294
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
武毅 已提交
295 296
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + i * group_offset_in));
武毅 已提交
297 298 299 300 301
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
302
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
303 304 305 306 307
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace,
武毅 已提交
308
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
武毅 已提交
309 310 311 312 313 314 315 316 317 318 319
            filter_grad_data + i * group_offset_filter));
      }
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
320 321
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
322
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
323
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
324
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
325
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
326 327 328
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);

K
Kexin Zhao 已提交
329
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
330 331
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>);
K
Kexin Zhao 已提交
332
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
333 334
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);