test_distribution.py 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import paddle
from paddle import fluid
from paddle.fluid import layers
from paddle.distribution import *
import math


class DistributionNumpy():
    def sample(self):
        raise NotImplementedError

    def entropy(self):
        raise NotImplementedError

    def kl_divergence(self, other):
        raise NotImplementedError

    def log_prob(self, value):
        raise NotImplementedError

    def probs(self, value):
        raise NotImplementedError


class UniformNumpy(DistributionNumpy):
    def __init__(self, low, high):
43 44 45 46 47
        self.low = np.array(low)
        self.high = np.array(high)
        if str(self.low.dtype) not in ['float32', 'float64']:
            self.low = self.low.astype('float32')
            self.high = self.high.astype('float32')
48 49 50 51 52 53 54

    def sample(self, shape):
        shape = tuple(shape) + (self.low + self.high).shape
        return self.low + (np.random.uniform(size=shape) *
                           (self.high - self.low))

    def log_prob(self, value):
55 56
        lb = np.less(self.low, value).astype(self.low.dtype)
        ub = np.less(value, self.high).astype(self.low.dtype)
57 58 59
        return np.log(lb * ub) - np.log(self.high - self.low)

    def probs(self, value):
60 61
        lb = np.less(self.low, value).astype(self.low.dtype)
        ub = np.less(value, self.high).astype(self.low.dtype)
62 63 64 65 66 67 68 69
        return (lb * ub) / (self.high - self.low)

    def entropy(self):
        return np.log(self.high - self.low)


class NormalNumpy(DistributionNumpy):
    def __init__(self, loc, scale):
70 71 72 73 74
        self.loc = np.array(loc)
        self.scale = np.array(scale)
        if str(self.loc.dtype) not in ['float32', 'float64']:
            self.loc = self.loc.astype('float32')
            self.scale = self.scale.astype('float32')
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    def sample(self, shape):
        shape = tuple(shape) + (self.loc + self.scale).shape
        return self.loc + (np.random.randn(*shape) * self.scale)

    def log_prob(self, value):
        var = self.scale * self.scale
        log_scale = np.log(self.scale)
        return -((value - self.loc) * (value - self.loc)) / (
            2. * var) - log_scale - math.log(math.sqrt(2. * math.pi))

    def probs(self, value):
        var = self.scale * self.scale
        return np.exp(-1. * ((value - self.loc) * (value - self.loc)) /
                      (2. * var)) / (math.sqrt(2 * math.pi) * self.scale)

    def entropy(self):
92 93
        return 0.5 + 0.5 * np.log(
            np.array(2. * math.pi).astype(self.loc.dtype)) + np.log(self.scale)
94 95 96 97 98 99 100 101 102

    def kl_divergence(self, other):
        var_ratio = (self.scale / other.scale)
        var_ratio = var_ratio * var_ratio
        t1 = ((self.loc - other.loc) / other.scale)
        t1 = (t1 * t1)
        return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio))


103 104
class UniformTest(unittest.TestCase):
    def setUp(self, use_gpu=False, batch_size=5, dims=6):
105 106
        self.use_gpu = use_gpu
        if not use_gpu:
107
            self.place = fluid.CPUPlace()
108 109
            self.gpu_id = -1
        else:
110
            self.place = fluid.CUDAPlace(0)
111 112
            self.gpu_id = 0

113
        self.init_numpy_data(batch_size, dims)
114

115 116
        paddle.disable_static(self.place)
        self.init_dynamic_data(batch_size, dims)
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        paddle.enable_static()
        self.test_program = fluid.Program()
        self.executor = fluid.Executor(self.place)
        self.init_static_data(batch_size, dims)

    def init_numpy_data(self, batch_size, dims):
        # low ans high are 'float'
        self.low_np = np.random.uniform(-2, 1)
        self.high_np = np.random.uniform(1, 3)
        self.values_np = np.array([1.0]).astype('float32')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_low = self.low_np
        self.dynamic_high = self.high_np
        self.dynamic_values = paddle.to_tensor(self.values_np)

    def init_static_data(self, batch_size, dims):
        self.static_low = self.low_np
        self.static_high = self.high_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[], dtype='float32')

    def compare_with_numpy(self, fetch_list, sample_shape=7, tolerance=1e-6):
        sample, entropy, log_prob, probs = fetch_list

        np_uniform = UniformNumpy(self.low_np, self.high_np)
        np_sample = np_uniform.sample([sample_shape])
        np_entropy = np_uniform.entropy()
        np_lp = np_uniform.log_prob(self.values_np)
        np_p = np_uniform.probs(self.values_np)

        np.testing.assert_equal(sample.shape, np_sample.shape)
151
        np.testing.assert_allclose(
152
            entropy, np_entropy, rtol=tolerance, atol=tolerance)
153
        np.testing.assert_allclose(
154 155
            log_prob, np_lp, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(probs, np_p, rtol=tolerance, atol=tolerance)
156

157 158 159 160 161 162 163 164 165 166 167 168
    def test_uniform_distribution_dygraph(self, sample_shape=7, tolerance=1e-6):
        paddle.disable_static(self.place)
        uniform = Uniform(self.dynamic_low, self.dynamic_high)
        sample = uniform.sample([sample_shape]).numpy()
        entropy = uniform.entropy().numpy()
        log_prob = uniform.log_prob(self.dynamic_values).numpy()
        probs = uniform.probs(self.dynamic_values).numpy()
        fetch_list = [sample, entropy, log_prob, probs]

        self.compare_with_numpy(fetch_list)

    def test_uniform_distribution_static(self, sample_shape=7, tolerance=1e-6):
169
        paddle.enable_static()
170 171 172 173 174 175 176
        with fluid.program_guard(self.test_program):
            uniform = Uniform(self.static_low, self.static_high)
            sample = uniform.sample([sample_shape])
            entropy = uniform.entropy()
            log_prob = uniform.log_prob(self.static_values)
            probs = uniform.probs(self.static_values)
            fetch_list = [sample, entropy, log_prob, probs]
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        feed_vars = {
            'low': self.low_np,
            'high': self.high_np,
            'values': self.values_np
        }

        self.executor.run(fluid.default_startup_program())
        fetch_list = self.executor.run(program=self.test_program,
                                       feed=feed_vars,
                                       fetch_list=fetch_list)

        self.compare_with_numpy(fetch_list)


class UniformTest2(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low ans high are 'int'
        self.low_np = int(np.random.uniform(-2, 1))
        self.high_np = int(np.random.uniform(1, 3))
        self.values_np = np.array([1.0]).astype('float32')


class UniformTest3(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # test broadcast: low is float, high is numpy.ndarray with dtype 'float32'.
        self.low_np = np.random.uniform(-2, 1)
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')

    def init_static_data(self, batch_size, dims):
        self.static_low = self.low_np
        self.static_high = self.high_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class UniformTest4(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low and high are numpy.ndarray with dtype 'float32'.
        self.low_np = np.random.randn(batch_size, dims).astype('float32')
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')

    def init_static_data(self, batch_size, dims):
        self.static_low = self.low_np
        self.static_high = self.high_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class UniformTest5(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low and high are numpy.ndarray with dtype 'float64'.
        self.low_np = np.random.randn(batch_size, dims).astype('float64')
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float64')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_low = self.low_np
        self.dynamic_high = self.high_np
        self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64')

    def init_static_data(self, batch_size, dims):
        self.static_low = self.low_np
        self.static_high = self.high_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float64')


class UniformTest6(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low and high are Tensor with dtype 'VarType.FP32'.
        self.low_np = np.random.randn(batch_size, dims).astype('float32')
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_low = paddle.to_tensor(self.low_np)
        self.dynamic_high = paddle.to_tensor(self.high_np)
        self.dynamic_values = paddle.to_tensor(self.values_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_low = layers.data(
                name='low', shape=[dims], dtype='float32')
            self.static_high = layers.data(
                name='high', shape=[dims], dtype='float32')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class UniformTest7(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low and high are Tensor with dtype 'VarType.FP64'.
        self.low_np = np.random.randn(batch_size, dims).astype('float64')
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float64')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_low = paddle.to_tensor(self.low_np, dtype='float64')
        self.dynamic_high = paddle.to_tensor(self.high_np, dtype='float64')
        self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64')

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_low = layers.data(
                name='low', shape=[dims], dtype='float64')
            self.static_high = layers.data(
                name='high', shape=[dims], dtype='float64')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float64')


class UniformTest8(UniformTest):
    def init_numpy_data(self, batch_size, dims):
        # low and high are Tensor with dtype 'VarType.FP64'. value's dtype is 'VarType.FP32'.
        self.low_np = np.random.randn(batch_size, dims).astype('float64')
        self.high_np = np.random.uniform(-5.0, 5.0,
                                         (batch_size, dims)).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_low = paddle.to_tensor(self.low_np, dtype='float64')
        self.dynamic_high = paddle.to_tensor(self.high_np, dtype='float64')
        self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float32')

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_low = layers.data(
                name='low', shape=[dims], dtype='float64')
            self.static_high = layers.data(
                name='high', shape=[dims], dtype='float64')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class NormalTest(unittest.TestCase):
    def setUp(self, use_gpu=False, batch_size=2, dims=3):
        self.use_gpu = use_gpu
        if not use_gpu:
            self.place = fluid.CPUPlace()
            self.gpu_id = -1
        else:
            self.place = fluid.CUDAPlace(0)
            self.gpu_id = 0

        self.init_numpy_data(batch_size, dims)

        paddle.disable_static(self.place)
        self.init_dynamic_data(batch_size, dims)

        paddle.enable_static()
        self.test_program = fluid.Program()
        self.executor = fluid.Executor(self.place)
        self.init_static_data(batch_size, dims)

    def init_numpy_data(self, batch_size, dims):
        # loc ans scale are 'float'
        self.loc_np = (np.random.ranf() - 0.5) * 4
        self.scale_np = (np.random.ranf() - 0.5) * 4
        while self.scale_np < 0:
            self.scale_np = (np.random.ranf() - 0.5) * 4
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = (np.random.ranf() - 0.5) * 4
        self.other_scale_np = (np.random.ranf() - 0.5) * 4
        while self.other_scale_np < 0:
            self.other_scale_np = (np.random.ranf() - 0.5) * 4
        self.values_np = np.random.ranf(1).astype('float32')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_loc = self.loc_np
        self.dynamic_scale = self.scale_np
        self.dynamic_other_loc = self.other_loc_np
        self.dynamic_other_scale = self.other_scale_np
        self.dynamic_values = paddle.to_tensor(self.values_np)

    def init_static_data(self, batch_size, dims):
        self.static_loc = self.loc_np
        self.static_scale = self.scale_np
        self.static_other_loc = self.other_loc_np
        self.static_other_scale = self.other_scale_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[], dtype='float32')

    def compare_with_numpy(self, fetch_list, sample_shape=7, tolerance=1e-6):
        sample, entropy, log_prob, probs, kl = fetch_list

        np_normal = NormalNumpy(self.loc_np, self.scale_np)
        np_sample = np_normal.sample([sample_shape])
        np_entropy = np_normal.entropy()
        np_lp = np_normal.log_prob(self.values_np)
        np_p = np_normal.probs(self.values_np)
        np_other_normal = NormalNumpy(self.other_loc_np, self.other_scale_np)
        np_kl = np_normal.kl_divergence(np_other_normal)

        np.testing.assert_equal(sample.shape, np_sample.shape)
383
        np.testing.assert_allclose(
384
            entropy, np_entropy, rtol=tolerance, atol=tolerance)
385
        np.testing.assert_allclose(
386 387 388
            log_prob, np_lp, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(probs, np_p, rtol=tolerance, atol=tolerance)
        np.testing.assert_allclose(kl, np_kl, rtol=tolerance, atol=tolerance)
389

390 391 392 393 394 395 396 397 398 399
    def test_normal_distribution_dygraph(self, sample_shape=7, tolerance=1e-6):
        paddle.disable_static(self.place)
        normal = Normal(self.dynamic_loc, self.dynamic_scale)

        sample = normal.sample([sample_shape]).numpy()
        entropy = normal.entropy().numpy()
        log_prob = normal.log_prob(self.dynamic_values).numpy()
        probs = normal.probs(self.dynamic_values).numpy()
        other_normal = Normal(self.dynamic_other_loc, self.dynamic_other_scale)
        kl = normal.kl_divergence(other_normal).numpy()
400

401 402 403 404
        fetch_list = [sample, entropy, log_prob, probs, kl]
        self.compare_with_numpy(fetch_list)

    def test_normal_distribution_static(self, sample_shape=7, tolerance=1e-6):
405
        paddle.enable_static()
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        with fluid.program_guard(self.test_program):
            normal = Normal(self.static_loc, self.static_scale)

            sample = normal.sample([sample_shape])
            entropy = normal.entropy()
            log_prob = normal.log_prob(self.static_values)
            probs = normal.probs(self.static_values)
            other_normal = Normal(self.static_other_loc,
                                  self.static_other_scale)
            kl = normal.kl_divergence(other_normal)

            fetch_list = [sample, entropy, log_prob, probs, kl]

        feed_vars = {
            'loc': self.loc_np,
            'scale': self.scale_np,
            'values': self.values_np,
            'other_loc': self.other_loc_np,
            'other_scale': self.other_scale_np
        }

        self.executor.run(fluid.default_startup_program())
        fetch_list = self.executor.run(program=self.test_program,
                                       feed=feed_vars,
                                       fetch_list=fetch_list)

        self.compare_with_numpy(fetch_list)


class NormalTest2(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # loc ans scale are 'int'
        self.loc_np = int((np.random.ranf() - 0.5) * 8)
        self.scale_np = int((np.random.ranf() - 0.5) * 8)
        while self.scale_np < 0:
            self.scale_np = int((np.random.ranf() - 0.5) * 8)
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = int((np.random.ranf() - 0.5) * 8)
        self.other_scale_np = int((np.random.ranf() - 0.5) * 8)
        while self.other_scale_np < 0:
            self.other_scale_np = int((np.random.ranf() - 0.5) * 8)
        self.values_np = np.random.ranf(1).astype('float32')


class NormalTest3(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # test broadcast: loc is float, scale is numpy.ndarray with dtype 'float32'.
        self.loc_np = (np.random.ranf() - 0.5) * 4
        self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = (np.random.ranf() - 0.5) * 4
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float32')

    def init_static_data(self, batch_size, dims):
        self.static_loc = self.loc_np
        self.static_scale = self.scale_np
        self.static_other_loc = self.other_loc_np
        self.static_other_scale = self.other_scale_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class NormalTest4(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # loc and scale are numpy.ndarray with dtype 'float32'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float32')

    def init_static_data(self, batch_size, dims):
        self.static_loc = self.loc_np
        self.static_scale = self.scale_np
        self.static_other_loc = self.other_loc_np
        self.static_other_scale = self.other_scale_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')


class NormalTest5(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # loc and scale are numpy.ndarray with dtype 'float64'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float64')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float64')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_loc = self.loc_np
        self.dynamic_scale = self.scale_np
        self.dynamic_other_loc = self.other_loc_np
        self.dynamic_other_scale = self.other_scale_np
        self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64')

    def init_static_data(self, batch_size, dims):
        self.static_loc = self.loc_np
        self.static_scale = self.scale_np
        self.static_other_loc = self.other_loc_np
        self.static_other_scale = self.other_scale_np
        with fluid.program_guard(self.test_program):
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float64')


class NormalTest6(NormalTest):
    def init_data(self, batch_size=2, dims=3):
        # loc and scale are Tensor with dtype 'VarType.FP32'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')
        self.loc = paddle.to_tensor(self.loc_np)
        self.scale = paddle.to_tensor(self.scale_np)
        self.values = paddle.to_tensor(self.values_np)
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float32')
        self.other_loc = paddle.to_tensor(self.other_loc_np)
        self.other_scale = paddle.to_tensor(self.other_scale_np)

    def init_numpy_data(self, batch_size, dims):
        # loc and scale are Tensor with dtype 'VarType.FP32'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float32')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float32')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float32')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float32')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_loc = paddle.to_tensor(self.loc_np)
        self.dynamic_scale = paddle.to_tensor(self.scale_np)
        self.dynamic_values = paddle.to_tensor(self.values_np)
        self.dynamic_other_loc = paddle.to_tensor(self.other_loc_np)
        self.dynamic_other_scale = paddle.to_tensor(self.other_scale_np)

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_loc = layers.data(
                name='loc', shape=[dims], dtype='float32')
            self.static_scale = layers.data(
                name='scale', shape=[dims], dtype='float32')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')
            self.static_other_loc = layers.data(
                name='other_loc', shape=[dims], dtype='float32')
            self.static_other_scale = layers.data(
                name='other_scale', shape=[dims], dtype='float32')


class NormalTest7(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # loc and scale are Tensor with dtype 'VarType.FP64'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float64')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float64')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_loc = paddle.to_tensor(self.loc_np, dtype='float64')
        self.dynamic_scale = paddle.to_tensor(self.scale_np, dtype='float64')
        self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64')
        self.dynamic_other_loc = paddle.to_tensor(
            self.other_loc_np, dtype='float64')
        self.dynamic_other_scale = paddle.to_tensor(
            self.other_scale_np, dtype='float64')

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_loc = layers.data(
                name='loc', shape=[dims], dtype='float64')
            self.static_scale = layers.data(
                name='scale', shape=[dims], dtype='float64')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float64')
            self.static_other_loc = layers.data(
                name='other_loc', shape=[dims], dtype='float64')
            self.static_other_scale = layers.data(
                name='other_scale', shape=[dims], dtype='float64')


class NormalTest8(NormalTest):
    def init_numpy_data(self, batch_size, dims):
        # loc and scale are Tensor with dtype 'VarType.FP64'. value's dtype is 'VarType.FP32'.
        self.loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.scale_np = np.random.randn(batch_size, dims).astype('float64')
        self.values_np = np.random.randn(batch_size, dims).astype('float32')
        # used to construct another Normal object to calculate kl_divergence
        self.other_loc_np = np.random.randn(batch_size, dims).astype('float64')
        self.other_scale_np = np.random.randn(batch_size,
                                              dims).astype('float64')
        while not np.all(self.scale_np > 0):
            self.other_scale_np = np.random.randn(batch_size,
                                                  dims).astype('float64')

    def init_dynamic_data(self, batch_size, dims):
        self.dynamic_loc = paddle.to_tensor(self.loc_np, dtype='float64')
        self.dynamic_scale = paddle.to_tensor(self.scale_np, dtype='float64')
        self.dynamic_values = paddle.to_tensor(self.values_np)
        self.dynamic_other_loc = paddle.to_tensor(
            self.other_loc_np, dtype='float64')
        self.dynamic_other_scale = paddle.to_tensor(
            self.other_scale_np, dtype='float64')

    def init_static_data(self, batch_size, dims):
        with fluid.program_guard(self.test_program):
            self.static_loc = layers.data(
                name='loc', shape=[dims], dtype='float64')
            self.static_scale = layers.data(
                name='scale', shape=[dims], dtype='float64')
            self.static_values = layers.data(
                name='values', shape=[dims], dtype='float32')
            self.static_other_loc = layers.data(
                name='other_loc', shape=[dims], dtype='float64')
            self.static_other_scale = layers.data(
                name='other_scale', shape=[dims], dtype='float64')
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791


class DistributionTestError(unittest.TestCase):
    def test_distribution_error(self):
        distribution = Distribution()

        self.assertRaises(NotImplementedError, distribution.sample)
        self.assertRaises(NotImplementedError, distribution.entropy)

        normal = Normal(0.0, 1.0)
        self.assertRaises(NotImplementedError, distribution.kl_divergence,
                          normal)

        value_npdata = np.array([0.8], dtype="float32")
        value_tensor = layers.create_tensor(dtype="float32")
        self.assertRaises(NotImplementedError, distribution.log_prob,
                          value_tensor)
        self.assertRaises(NotImplementedError, distribution.probs, value_tensor)

    def test_normal_error(self):
        normal = Normal(0.0, 1.0)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, normal.log_prob, value)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, normal.probs, value)

        shape = 1.0
        # type of shape must be list
        self.assertRaises(TypeError, normal.sample, shape)

        seed = 1.0
        # type of seed must be int
        self.assertRaises(TypeError, normal.sample, [2, 3], seed)

        normal_other = Uniform(1.0, 2.0)
        # type of other must be an instance of Normal
        self.assertRaises(TypeError, normal.kl_divergence, normal_other)

    def test_uniform_error(self):
        uniform = Uniform(0.0, 1.0)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, uniform.log_prob, value)

        value = [1.0, 2.0]
        # type of value must be variable
        self.assertRaises(TypeError, uniform.probs, value)

        shape = 1.0
        # type of shape must be list
        self.assertRaises(TypeError, uniform.sample, shape)

        seed = 1.0
        # type of seed must be int
        self.assertRaises(TypeError, uniform.sample, [2, 3], seed)


class DistributionTestName(unittest.TestCase):
    def get_prefix(self, string):
        return (string.split('.')[0])

    def test_normal_name(self):
        name = 'test_normal'
        normal1 = Normal(0.0, 1.0, name=name)
        self.assertEqual(normal1.name, name)

        normal2 = Normal(0.0, 1.0)
        self.assertEqual(normal2.name, 'Normal')

        paddle.enable_static()

        sample = normal1.sample([2])
        self.assertEqual(self.get_prefix(sample.name), name + '_sample')

        entropy = normal1.entropy()
        self.assertEqual(self.get_prefix(entropy.name), name + '_entropy')

        value_npdata = np.array([0.8], dtype="float32")
        value_tensor = layers.create_tensor(dtype="float32")
        layers.assign(value_npdata, value_tensor)

        lp = normal1.log_prob(value_tensor)
        self.assertEqual(self.get_prefix(lp.name), name + '_log_prob')

        p = normal1.probs(value_tensor)
        self.assertEqual(self.get_prefix(p.name), name + '_probs')

        kl = normal1.kl_divergence(normal2)
        self.assertEqual(self.get_prefix(kl.name), name + '_kl_divergence')

    def test_uniform_name(self):
        name = 'test_uniform'
        uniform1 = Uniform(0.0, 1.0, name=name)
        self.assertEqual(uniform1.name, name)

        uniform2 = Uniform(0.0, 1.0)
        self.assertEqual(uniform2.name, 'Uniform')

        paddle.enable_static()

        sample = uniform1.sample([2])
        self.assertEqual(self.get_prefix(sample.name), name + '_sample')

        entropy = uniform1.entropy()
        self.assertEqual(self.get_prefix(entropy.name), name + '_entropy')

        value_npdata = np.array([0.8], dtype="float32")
        value_tensor = layers.create_tensor(dtype="float32")
        layers.assign(value_npdata, value_tensor)

        lp = uniform1.log_prob(value_tensor)
        self.assertEqual(self.get_prefix(lp.name), name + '_log_prob')

        p = uniform1.probs(value_tensor)
        self.assertEqual(self.get_prefix(p.name), name + '_probs')


if __name__ == '__main__':
    unittest.main()