test_multiplex_op.py 5.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21
import paddle.fluid as fluid
Y
YuanRisheng 已提交
22
from paddle.fluid.framework import _test_eager_guard
Y
Yibing Liu 已提交
23 24 25 26 27


class TestMultiplexOp(OpTest):
    def setUp(self):
        self.op_type = "multiplex"
28 29 30 31
        rows = 4
        index = np.arange(0, rows).astype('int32')
        np.random.shuffle(index)
        index = np.reshape(index, (rows, 1))
32 33 34 35
        ins1 = np.random.random((rows, 25)).astype("float64")
        ins2 = np.random.random((rows, 25)).astype("float64")
        ins3 = np.random.random((rows, 25)).astype("float64")
        ins4 = np.random.random((rows, 25)).astype("float64")
Y
Yibing Liu 已提交
36
        self.inputs = {
37 38
            'Ids': index,
            'X': [('x1', ins1), ('x2', ins2), ('x3', ins3), ('x4', ins4)]
Y
Yibing Liu 已提交
39 40 41 42
        }
        # multiplex output
        output = np.zeros_like(ins1)
        for i in range(0, rows):
43
            k = index[i][0]
Y
Yibing Liu 已提交
44 45 46 47 48 49 50
            output[i] = self.inputs['X'][k][1][i]
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
51 52 53 54 55 56 57 58 59 60
        self.check_grad(['x1', 'x2', 'x3', 'x4'], 'Out')

    def test_check_grad_ignore_x1(self):
        self.check_grad(['x2', 'x3', 'x4'], 'Out', no_grad_set=set('x1'))

    def test_check_grad_ignore_x1_x2(self):
        self.check_grad(['x3', 'x4'], 'Out', no_grad_set=set(['x1', 'x2']))

    def test_check_grad_ignore_x3(self):
        self.check_grad(['x1', 'x2', 'x4'], 'Out', no_grad_set=set('x3'))
Y
Yibing Liu 已提交
61 62


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class TestMultiplexOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='int64')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='int64')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')

            def test_list():
                # the inputs type must be list
                fluid.layers.multiplex(inputs=x1, index=index)

            self.assertRaises(TypeError, test_list)

            def test_len():
                fluid.layers.multiplex(inputs=[x1], index=index)

            self.assertRaises(ValueError, test_len)

            def test_type():
                y1 = fluid.data(name='y1', shape=[None, 2], dtype='int16')
                y2 = fluid.data(name='y2', shape=[None, 2], dtype='int16')
                fluid.layers.multiplex(inputs=[y1, y2], index=index)

            self.assertRaises(TypeError, test_type)

            def test_type2():
                index2 = fluid.data(
                    name='index2', shape=[None, 1], dtype='int16')
                fluid.layers.multiplex(inputs=[x1, x2], index=index2)

            self.assertRaises(TypeError, test_type2)


96 97 98 99 100 101 102 103 104 105
class TestMultiplexODygrap(unittest.TestCase):
    def test_multiplex_dygraph(self):
        paddle.disable_static()
        img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
        img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
        inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
        index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
        res = paddle.multiplex(inputs, index)
        paddle.enable_static()

Y
YuanRisheng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    def test_dygraph_final_state_api(self):
        with fluid.dygraph.guard():
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            inputs[0].stop_gradient = False
            inputs[1].stop_gradient = False
            res = paddle.multiplex(inputs, index)
            res.backward()
            with _test_eager_guard():
                inputs_eager = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
                index_eager = paddle.to_tensor(
                    np.array([[1], [0]]).astype(np.int32))
                inputs_eager[0].stop_gradient = False
                inputs_eager[1].stop_gradient = False
                res_eager = paddle.multiplex(inputs_eager, index_eager)
                res_eager.backward()
                self.assertEqual((res.numpy() == res_eager.numpy()).all(), True)
                self.assertEqual((inputs[0].grad.numpy() ==
                                  inputs_eager[0].grad.numpy()).all(), True)
                self.assertEqual((inputs[1].grad.numpy() ==
                                  inputs_eager[1].grad.numpy()).all(), True)

130

Y
Yibing Liu 已提交
131 132
if __name__ == '__main__':
    unittest.main()