primops.py 10.1 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from .primreg import REGISTER_FN


def _simple_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type=optype, inputs={'X': x}, outputs={'Y': out}, attrs={})
    return out


def _simple_binop(helper):
    optype = helper.layer_type
    x, y, out = tuple(map(helper.kwargs.get, ('x', 'y', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

36 37 38 39 40 41 42
    helper.append_op(type=optype,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs={})
L
levi131 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    return out


def _manipulation_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))

    attrs = {
        k: helper.kwargs[k]
        for k in ('shape', 'axis', 'index') if k in helper.kwargs
    }

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

58 59 60 61
    helper.append_op(type=optype,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    return out


# Each primitive op is given a Python constructor for sake of convenience.
def fill_const(value, shape, dtype, out=None):
    attrs = {'value': value, 'shape': shape, 'dtype': dtype}
    helper = LayerHelper('fill_constant_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type, outputs={'Y': out}, attrs=attrs)
    return out


def neg(x, out=None):
    zero = fill_const(0.0, x.shape, x.dtype)
    return sub(zero, x)


def set_value(x, y, axis, starts, ends, strides, out):
    assert x is out, "x and out should be the same Tensor in set_value"
    attrs = {'axes': axis, 'starts': starts, 'ends': ends, 'steps': strides}
    helper = LayerHelper('set_value', **locals())
84 85 86 87 88 89 90
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Input': x,
                         'ValueTensor': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
L
levi131 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    return out


@REGISTER_FN('add_p', 'X', 'Y', 'Z')
def add(x, y, out=None):
    return _simple_binop(LayerHelper('add_p', **locals()))


@REGISTER_FN('sub_p', 'X', 'Y', 'Z')
def sub(x, y, out=None):
    return _simple_binop(LayerHelper('sub_p', **locals()))


@REGISTER_FN('mul_p', 'X', 'Y', 'Z')
def mul(x, y, out=None):
    return _simple_binop(LayerHelper('mul_p', **locals()))


@REGISTER_FN('div_p', 'X', 'Y', 'Z')
def div(x, y, out=None):
    return _simple_binop(LayerHelper('div_p', **locals()))


@REGISTER_FN('sqrt_p', 'X', 'Y')
def sqrt(x, out=None):
    return _simple_unop(LayerHelper('sqrt_p', **locals()))


@REGISTER_FN('tanh_p', 'X', 'Y')
def tanh(x, out=None):
    return _simple_unop(LayerHelper('tanh_p', **locals()))


@REGISTER_FN('reshape_p', 'X', 'Y')
def reshape(x, shape, out=None):
    return _manipulation_unop(LayerHelper('reshape_p', **locals()))


@REGISTER_FN('broadcast_p', 'X', 'Y')
def broadcast(x, shape, out=None):
    return _manipulation_unop(LayerHelper('broadcast_p', **locals()))


@REGISTER_FN('transpose_p', 'X', 'Y')
def transpose(x, axis=None, out=None):
    return _manipulation_unop(LayerHelper('transpose_p', **locals()))


@REGISTER_FN('split_p', 'X', 'YS')
def split(x, num_or_sections, axis=0, outs=None):
    if isinstance(num_or_sections, (list, tuple)):
        n = len(num_or_sections)
    else:
144 145
        if not isinstance(num_or_sections, int):
            raise TypeError(
146 147
                f'num_or_sections must be int, but got {type(num_or_sections)}.'
            )
L
levi131 已提交
148 149 150 151 152 153 154 155 156 157
        n = num_or_sections

    attrs = {'num_or_sections': num_or_sections, 'axis': axis}

    helper = LayerHelper('split_p', **locals())
    if outs is None:
        outs = [
            helper.create_variable_for_type_inference(dtype=x.dtype)
            for i in range(n)
        ]
158 159 160 161
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'YS': outs},
                     attrs=attrs)
L
levi131 已提交
162 163 164 165 166
    return outs


@REGISTER_FN('concat_p', 'XS', 'Y')
def concat(xs, axis=0, out=None):
167 168
    if isinstance(xs, paddle.fluid.framework.Variable):
        xs = [xs]
L
levi131 已提交
169 170 171 172
    attrs = {'axis': axis}
    helper = LayerHelper('concat_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=xs[0].dtype)
173 174 175 176
    helper.append_op(type=helper.layer_type,
                     inputs={'XS': xs},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
177 178 179 180 181
    return out


@REGISTER_FN('reduce_p', 'X', 'Y')
def reduce(x, axis, keepdim=False, out=None):
182 183 184 185
    if not isinstance(axis, (tuple, list)):
        raise TypeError(f'axis must be tuple or list, but got {type(axis)}')
    if not isinstance(keepdim, bool):
        raise TypeError(f'keepdim must be bool, but got {type(keepdim)}')
L
levi131 已提交
186 187 188 189 190 191
    attrs = {'axis': axis, 'keepdim': keepdim}

    helper = LayerHelper('reduce_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

192 193 194 195
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
196 197 198 199 200 201 202 203 204 205
    return out


@REGISTER_FN('matmul_p', 'X', 'Y', 'Z')
def matmul(x, y, out=None):
    return _simple_binop(LayerHelper('matmul_p', **locals()))


@REGISTER_FN('slice_select_p', 'X', 'Y')
def slice_select(x, axis, starts, ends, strides, out=None):
206 207 208 209 210 211 212 213 214 215 216 217 218 219
    if not isinstance(axis, (list, tuple)):
        raise TypeError(f'Argument type error. `axis` is supposed to be list or'
                        f' tuple but found {type(axis)}.')
    if not isinstance(starts, (list, tuple)):
        raise TypeError(
            f'Argument type error. `starts` is supposed to be list or'
            f' tuple but found {type(starts)}.')
    if not isinstance(ends, (list, tuple)):
        raise TypeError(f'Argument type error. `ends` is supposed to be list or'
                        f' tuple but found {type(ends)}.')
    assert len(axis) == len(starts) == len(ends) == len(strides), (
        f'len(axis), len(starts), len(ends) and len(strides) should be equal, '
        f'but len(axis)={len(axis)}, len(starts)={len(starts)}, '
        f'len(ends)={len(ends)} and len(strides)={len(strides)}')
L
levi131 已提交
220 221 222 223 224

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
225 226 227 228
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
229 230 231 232 233
    return out


@REGISTER_FN('slice_assign_p', 'X', 'Y', 'Z')
def slice_assign(x, y, axis, starts, ends, strides, out=None):
234 235 236 237 238 239 240
    assert len(starts) == len(ends) == len(strides) == len(axis), (
        f'len(starts), len(ends), len(strides) and len(axis) should be equal, '
        f'but len(starts)={len(starts)}, len(ends)={len(ends)}, '
        f'len(strides)={len(strides)} and len(axis)={len(axis)}')
    assert len(y.shape) == len(x.shape), (
        f'len(y.shape) should be equal to len(x.shape), '
        f'but len(y.shape)={len(y.shape)} and len(x.shape)={len(x.shape)}.')
L
levi131 已提交
241 242 243 244 245

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_assign_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
246 247 248 249 250 251 252
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
253 254 255
    return out


256
@REGISTER_FN('gather_p', 'X', 'IndexTensor', 'Y')
L
levi131 已提交
257 258 259 260 261
def gather(x, indextensor, axis, out=None):
    attrs = {'axis': axis}
    helper = LayerHelper('gather_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
262 263 264 265 266 267 268
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'IndexTensor': indextensor
                     },
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
269 270 271 272 273
    return out


@REGISTER_FN('scatter_add_p', 'X', 'Y', 'IndexTensor', 'Z')
def scatter_add(x, y, indextensor, axis, out=None):
274 275 276 277 278 279 280 281 282 283
    assert len(x.shape) == len(y.shape), (
        f'len(x.shape) should be equal to len(y.shape), '
        f'but len(x.shape)={len(x.shape)} and len(y.shape)={len(y.shape)}.')
    assert len(
        indextensor.shape
    ) == 1, f'len(indextensor.shape) must be equal to 1, but got {len(indextensor.shape)}.'
    assert y.shape[axis] == indextensor.shape[0], (
        f'y.shape[axis] should be equal to indextensor.shape[0], '
        f'but y.shape[axis]={y.shape[axis]} and '
        f'indextensor.shape[0]={indextensor.shape[0]}.')
L
levi131 已提交
284 285 286 287
    attrs = {'axis': axis}
    helper = LayerHelper('scatter_add_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
288 289 290 291 292 293 294 295
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y,
                         'IndexTensor': indextensor
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
296
    return out