test_scale_dev_api.cc 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/kernels/scale_kernel.h"
19

20
#include "paddle/fluid/memory/allocation/allocator_facade.h"
21 22 23
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
24

25
namespace phi {
26 27
namespace tests {

28
namespace framework = paddle::framework;
29
using DDim = phi::DDim;
30 31 32

TEST(DEV_API, scale) {
  // 1. create tensor
33
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
34
      paddle::platform::CPUPlace());
35 36 37 38
  phi::DenseTensor dense_x(alloc.get(),
                           phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                                phi::make_ddim({3, 4}),
                                                phi::DataLayout::NCHW));
39

40 41
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
42 43 44 45 46 47 48 49
  for (size_t i = 0; i < 12; ++i) {
    dense_x_data[i] = i * 1.0;
  }
  float scale = 2;
  float bias = 1;
  bool bias_after_scale = true;

  // 2. test API
50
  phi::CPUContext dev_ctx;
W
Wilber 已提交
51 52 53 54 55
  dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(paddle::platform::CPUPlace())
                           .get());
  dev_ctx.Init();

56
  auto out = phi::Scale<float>(dev_ctx, dense_x, scale, bias, bias_after_scale);
57 58 59 60

  // 3. check result
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.numel(), 12);
61 62
  ASSERT_EQ(out.meta().dtype, phi::DataType::FLOAT32);
  ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW);
63 64 65 66 67 68 69 70

  auto expect_result = 23;
  auto actual_result = out.data<float>()[11];
  ASSERT_NEAR(expect_result, actual_result, 1e-6f);
}

TEST(DEV_API, scale_host) {
  // 1. create tensor
71
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
72
      paddle::platform::CPUPlace());
73 74 75 76
  phi::DenseTensor dense_x(alloc.get(),
                           phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                                phi::make_ddim({3, 4}),
                                                phi::DataLayout::NCHW));
77 78
  auto* dense_x_data =
      dense_x.mutable_data<float>(paddle::platform::CPUPlace());
79 80 81
  for (size_t i = 0; i < 12; ++i) {
    dense_x_data[i] = i * 1.0;
  }
82

83 84 85 86
  phi::DenseTensor scale(
      alloc.get(),
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({1}), phi::DataLayout::NCHW));
87
  scale.data<float>()[0] = 2;
88 89 90 91
  float bias = 1;
  bool bias_after_scale = true;

  // 2. test API
92
  phi::CPUContext dev_ctx;
W
Wilber 已提交
93 94 95 96 97
  dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(paddle::platform::CPUPlace())
                           .get());
  dev_ctx.Init();

98
  auto out = phi::Scale<float>(dev_ctx, dense_x, scale, bias, bias_after_scale);
99 100 101 102

  // 3. check result
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.numel(), 12);
103 104
  ASSERT_EQ(out.meta().dtype, phi::DataType::FLOAT32);
  ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW);
105 106 107 108 109

  auto expect_result = 23;
  auto actual_result = out.data<float>()[11];
  ASSERT_NEAR(expect_result, actual_result, 1e-6f);
}
110 111

}  // namespace tests
112
}  // namespace phi