test_fleet_base.py 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
17 18
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
19
import os
20
import paddle.fluid as fluid
21
import paddle.nn as nn
22
import numpy as np
23 24 25 26 27


class TestFleetBase(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
28
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36000"
29 30
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
31
            "127.0.0.1:36001,127.0.0.2:36002"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    def test_init(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

    def test_is_first_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_first_worker():
            print("test fleet first worker done.")

    def test_worker_index(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_index())

    def test_worker_num(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_num())

    def test_is_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            print("test fleet is worker")

    def test_worker_endpoints(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
62 63 64
        self.assertEqual(
            "127.0.0.1:36000", fleet.worker_endpoints(to_string=True))
        self.assertEqual(["127.0.0.1:36000"], fleet.worker_endpoints())
65 66

    def test_server_num(self):
67 68 69 70 71
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["POD_IP"] = "127.0.0.1"

        role = role_maker.PaddleCloudRoleMaker()
72
        fleet.init(role)
73 74
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        self.assertEqual(2, fleet.server_num())
75 76

    def test_server_index(self):
77 78 79 80 81
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["POD_IP"] = "127.0.0.1"

        role = role_maker.PaddleCloudRoleMaker()
82
        fleet.init(role)
83
        self.assertEqual(0, fleet.server_index())
84 85

    def test_server_endpoints(self):
86 87 88 89 90
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["POD_IP"] = "127.0.0.1"

        role = role_maker.PaddleCloudRoleMaker()
91 92
        fleet.init(role)
        if fleet.is_server():
93 94 95 96 97
            self.assertEqual(
                "127.0.0.1:36001,127.0.0.2:36002",
                fleet.server_endpoints(to_string=True))
            self.assertEqual(["127.0.0.1:36001", "127.0.0.2:36002"],
                             fleet.server_endpoints())
98 99

    def test_is_server(self):
100 101 102 103 104
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["POD_IP"] = "127.0.0.1"

        role = role_maker.PaddleCloudRoleMaker()
105
        fleet.init(role)
106
        self.assertTrue(fleet.is_server())
107 108 109 110

    def test_util(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
111
        self.assertNotEqual(fleet.util, None)
112 113 114 115 116 117 118 119 120 121 122

    def test_barrier_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.barrier_worker()

    def test_init_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

123 124 125
        with self.assertRaises(ValueError):
            if fleet.is_worker():
                fleet.init_worker()
126 127 128 129

    def test_stop_worker(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
130 131 132
        with self.assertRaises(ValueError):
            if fleet.is_worker():
                fleet.stop_worker()
133 134 135 136

    def test_distributed_optimizer(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
137

138
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
139
        optimizer = fleet.distributed_optimizer(optimizer)
140

141 142 143
    def test_exception(self):
        import paddle.distributed.fleet as fleet
        self.assertRaises(Exception, fleet.init_worker)
144 145


146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class TestFleetDygraph(unittest.TestCase):
    def setUp(self):
        os.environ[
            "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213,127.0.0.1:36214"
        os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_TRAINER_ID"] = "0"

    def test_dygraph_method(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = fluid.dygraph.to_variable(value)
        layer = paddle.nn.Linear(13, 5)
        adam = paddle.optimizer.Adam(
            learning_rate=0.01, parameters=layer.parameters())
        # remove init cause this UT cannot launch distributed task
        adam = fleet.distributed_optimizer(adam)
        dp_layer = fleet.distributed_model(layer)
        lr = 0.001
        adam.set_lr(lr)
        cur_lr = adam.get_lr()
        assert (lr == cur_lr)
        state_dict = adam.state_dict()
        adam.set_state_dict(state_dict)

D
Dong Daxiang 已提交
171 172
        final_strategy = fleet._final_strategy()

173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear1 = nn.Linear(10, 10)
        self._linear2 = nn.Linear(10, 1)

    def forward(self, x):
        return self._linear2(self._linear1(x))


class TestFleetDygraphSingle(unittest.TestCase):
    def setUp(self):
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"

    def test_dygraph_single(self):
        paddle.disable_static()
        fleet.init(is_collective=True)

        layer = LinearNet()
        loss_fn = nn.MSELoss()
        adam = paddle.optimizer.Adam(
            learning_rate=0.001, parameters=layer.parameters())

        adam = fleet.distributed_optimizer(adam)
        dp_layer = fleet.distributed_model(layer)
        for step in range(2):
            inputs = paddle.randn([10, 10], 'float32')
            outputs = dp_layer(inputs)
            labels = paddle.randn([10, 1], 'float32')
            loss = loss_fn(outputs, labels)
            loss.backward()
            adam.step()
            adam.clear_grad()


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class TestFleetBaseSingleRunCollective(unittest.TestCase):
    def setUp(self):
        os.environ.pop("PADDLE_TRAINER_ENDPOINTS")

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_collective_minimize(self):
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init(is_collective=True)
        optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer)
        optimizer.minimize(avg_cost)

        place = fluid.CUDAPlace(0) if paddle.fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()

        exe = fluid.Executor(place)
        exe.run(paddle.static.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=self.gen_data(), fetch_list=[avg_cost.name])
            print("cost of step[{}] = {}".format(i, cost_val))


class TestFleetBaseSingleRunPS(unittest.TestCase):
    def setUp(self):
        os.environ.pop("PADDLE_PSERVERS_IP_PORT_LIST")

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_ps_minimize(self):
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init()
        strategy = paddle.distributed.fleet.DistributedStrategy()
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)
        if fleet.is_server():
            fleet.init_server()
            fleet.run_server()
        elif fleet.is_worker():
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(paddle.static.default_startup_program())
            step = 100
            for i in range(step):
                cost_val = exe.run(program=fluid.default_main_program(),
                                   feed=self.gen_data(),
                                   fetch_list=[avg_cost.name])
                print("worker_index: %d, step%d cost = %f" %
                      (fleet.worker_index(), i, cost_val[0]))
            fleet.save_persistables(exe, "fleet_single_model/")
            print("save fleet models done.")


291 292
if __name__ == "__main__":
    unittest.main()