hccl_helper.h 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_ASCEND_CL)

#include <stdio.h>
#include <memory>
#include <string>
#include <thread>  // NOLINT
#include <typeindex>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/collective_helper.h"

#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/platform/dynload/nccl.h"
#endif

#ifdef PADDLE_WITH_RCCL
#include "paddle/fluid/platform/dynload/rccl.h"
#endif

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/dynload/hccl.h"
#endif

#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"

#define NCCL_ID_VARNAME "NCCLID"

namespace paddle {
namespace platform {

inline hcclDataType_t ToHCCLDataType(framework::proto::VarType::Type type) {
  if (type == framework::proto::VarType::FP32) {
    return HCCL_DATA_TYPE_FP32;
  } else if (type == framework::proto::VarType::FP16) {
    return HCCL_DATA_TYPE_FP16;
  }else if (type == framework::proto::VarType::INT32) {
    return HCCL_DATA_TYPE_INT32;
  } else if (type == framework::proto::VarType::INT8) {
    return HCCL_DATA_TYPE_INT8;
  } 
  // else if (type == framework::proto::VarType::FP64) {
  //   return HCCL_DATA_TYPE_FP32;
  // }
  else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in hccl is not supported."));
  }
}

// // NOTE(minqiyang): according to the ncclGroupEnd documentations:
// // https://docs.nvidia.com/deeplearning/sdk/nccl-api/ncclapidoc.html,
// // ncclGroupEnd will wait for all communicators to be initialized, which will
// // cause blocking problem when a runtime_error was thrown, so try only guard
// // NCCL actions when use it.
// class NCCLGroupGuard {
//  public:
//   static std::mutex &NCCLMutex() {
//     static std::mutex mtx;
//     return mtx;
//   }

//   inline NCCLGroupGuard() {
//     NCCLMutex().lock();
//     PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclGroupStart());
//   }

//   inline ~NCCLGroupGuard() PADDLE_MAY_THROW {
//     PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclGroupEnd());
//     NCCLMutex().unlock();
//   }
// };

// struct NCCLContext {
//   std::unique_ptr<CUDADeviceContext> ctx_;
//   ncclComm_t comm_;

//   explicit NCCLContext(int dev_id)
//       : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))), comm_{nullptr} {}

//   gpuStream_t stream() const { return ctx_->stream(); }
//   ncclComm_t comm() const { return comm_; }

//   int device_id() const {
//     return BOOST_GET_CONST(platform::CUDAPlace, ctx_->GetPlace()).device;
//   }
// };

// struct NCCLContextMap {
//   std::unordered_map<int, NCCLContext> contexts_;
//   std::vector<int> order_;

//   explicit NCCLContextMap(const std::vector<platform::Place> &places,
//                           ncclUniqueId *nccl_id = nullptr,
//                           size_t num_trainers = 1, size_t trainer_id = 0) {
//     PADDLE_ENFORCE_EQ(!places.empty(), true,
//                       platform::errors::InvalidArgument(
//                           "The NCCL place should not be empty."));
//     order_.reserve(places.size());
//     for (auto &p : places) {
//       int dev_id = BOOST_GET_CONST(CUDAPlace, p).device;
//       order_.emplace_back(dev_id);
//       contexts_.emplace(dev_id, NCCLContext(dev_id));
//     }
//     PADDLE_ENFORCE_EQ(
//         order_.size(), contexts_.size(),
//         platform::errors::Unavailable("NCCL Context Map does not support "
//                                       "contain two or more same device."));

//     std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
//     // if num_trainers == 1, should create a new nccl id for local comms.
//     if (num_trainers == 1 && nccl_id == nullptr) {
//       std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
//       PADDLE_RETRY_CUDA_SUCCESS(platform::dynload::ncclCommInitAll(
//           comms.get(), static_cast<int>(order_.size()), order_.data()));
//     } else {
//       PADDLE_ENFORCE_NOT_NULL(nccl_id, platform::errors::InvalidArgument(
//                                            "The NCCL id should not be null."));
//       {
//         int nranks = num_trainers * order_.size();
//         NCCLGroupGuard gurad;
//         for (size_t i = 0; i < order_.size(); ++i) {
//           int gpu_id = order_[i];
//           int rank;
//           if (order_.size() > 1) {
//             rank = trainer_id * order_.size() + i;
//           } else {
//             rank = trainer_id;
//           }
//           VLOG(1) << "init nccl rank:" << rank << ", nranks:" << nranks
//                   << ", gpu_id:" << gpu_id << ", dev_id:" << order_[i];
//           SetDeviceId(gpu_id);
//           PADDLE_RETRY_CUDA_SUCCESS(platform::dynload::ncclCommInitRank(
//               comms.get() + i, nranks, *nccl_id, rank));
//         }
//       }
//     }
//     int i = 0;
//     for (auto &dev_id : order_) {
//       contexts_.at(dev_id).comm_ = comms[i++];
//     }
//   }

//   NCCLContextMap(const NCCLContextMap &other) = delete;
//   NCCLContextMap &operator=(const NCCLContextMap &other) = delete;

//   CUDADeviceContext *DevCtx(int dev_id) const { return at(dev_id).ctx_.get(); }

//   CUDADeviceContext *DevCtx(platform::Place p) const {
//     return DevCtx(BOOST_GET_CONST(CUDAPlace, p).device);
//   }

//   const NCCLContext &at(platform::Place p) const {
//     return this->at(BOOST_GET_CONST(CUDAPlace, p).device);
//   }

//   const NCCLContext &at(int dev_id) const { return contexts_.at(dev_id); }

//   void WaitAll() {
//     for (auto &p : contexts_) {
//       p.second.ctx_->Wait();
//     }
//   }
// };

// inline std::string GetFlatNCCLVarName(size_t pos) {
//   if (pos == 0) {
//     return NCCL_ID_VARNAME;
//   }
//   return string::Sprintf("%s_%d", NCCL_ID_VARNAME, static_cast<int>(pos));
// }

// inline std::string GetHierarchicalExterNCCLVarName(size_t pos) {
//   return string::Sprintf("Hierarchical_exter_%s_%d", NCCL_ID_VARNAME,
//                          static_cast<int>(pos));
// }
// inline std::string GetHierarchicalInterNCCLVarName(size_t pos) {
//   return string::Sprintf("Hierarchical_inter_%s_%d", NCCL_ID_VARNAME,
//                          static_cast<int>(pos));
// }

// class NCCLCommunicator {
//  public:
//   NCCLCommunicator() {}
//   virtual ~NCCLCommunicator() PADDLE_MAY_THROW {}

//   NCCLContextMap *DefaultFlatCtx() const {
//     if (flat_ctxs_.size() == 0) {
//       return nullptr;
//     }

//     return flat_ctxs_[0].get();
//   }

//   std::vector<std::unique_ptr<NCCLContextMap>> *GetFlatCtxs() {
//     return &flat_ctxs_;
//   }

//   NCCLContextMap *GetFlatCtx(size_t run_order) const {
//     return flat_ctxs_[run_order % flat_ctxs_.size()].get();
//   }

//   NCCLContextMap *GetRunEnvNCCLCtx(size_t run_order,
//                                    bool use_hierarchical_allreduce) const {
//     if (!use_hierarchical_allreduce) {
//       return GetFlatCtx(run_order);
//     }

//     return GetHierarchicalInterCtx(run_order);
//   }

  
//    *When nccl inits nccl comm using ncclCommInitAll, it meets error when
//    *allreduce ophandle and sync_batch_norm_op use ncclallreduce parallelly. So
//    *create a new nccl comm for sync_batch_norm_op. And these codes should be
//    *polished with a unified nccl management.
  
//   NCCLContextMap *GetSyncBatchNormCtx(
//       framework::Scope *scope, const std::vector<platform::Place> &places) {
//     auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
//     if (nccl_id_var != nullptr) {
//       return DefaultFlatCtx();
//     }

//     if (sync_batch_norm_ctx_.get() == nullptr) {
//       sync_batch_norm_ctx_.reset(new NCCLContextMap(places));
//     }
//     return sync_batch_norm_ctx_.get();
//   }

//   void InitFlatCtxs(const std::vector<platform::Place> &places,
//                     const std::vector<ncclUniqueId *> &nccl_ids,
//                     size_t trainers_num, size_t trainer_id) {
//     if (nccl_ids.size() == 0) {
//       auto ptr = new platform::NCCLContextMap(places);
//       VLOG(1) << "init local trainer";
//       flat_ctxs_.emplace_back(ptr);
//     } else {
//       for (size_t i = 0; i < nccl_ids.size(); i++) {
//         auto ptr = new platform::NCCLContextMap(places, nccl_ids[i],
//                                                 trainers_num, trainer_id);
//         VLOG(1) << "init trainer_id:" << trainer_id << ", comm no:" << i;
//         flat_ctxs_.emplace_back(ptr);
//       }
//     }

//     // as Executor have no way to use ncclComm created by ParallelExecutor,
//     // we assign all flatten contexts to NCCLCommContext to fix.
//     int nranks = static_cast<int>(trainers_num * places.size());
//     int nrings = static_cast<int>(flat_ctxs_.size());
//     for (int ring_id = 0; ring_id < nrings; ++ring_id) {
//       for (size_t p = 0; p < places.size(); ++p) {
//         int rank = trainer_id * places.size() + p;
//         int dev_id = BOOST_GET_CONST(CUDAPlace, places[p]).device;
//         auto &ctx = flat_ctxs_[ring_id]->contexts_.at(dev_id);
//         NCCLCommContext::Instance().AssignNCCLComm(ctx.comm_, nranks, rank,
//                                                    dev_id, ring_id);
//       }
//     }
//   }

//   void InitHierarchicalCtxs(const std::vector<platform::Place> &places,
//                             const std::vector<ncclUniqueId *> &inter_nccl_ids,
//                             const std::vector<ncclUniqueId *> &exter_nccl_ids,
//                             size_t trainers_num, size_t trainer_id,
//                             size_t inter_trainers_num,
//                             size_t exter_trainers_num) {
//     PADDLE_ENFORCE_EQ(
//         trainers_num, inter_trainers_num * exter_trainers_num,
//         platform::errors::InvalidArgument(
//             "trainers_num:%llu != inter_trainers_num:%llu * "
//             "exter_trainers_num:%llu",
//             trainers_num, inter_trainers_num, exter_trainers_num));

//     PADDLE_ENFORCE_GT(
//         inter_trainers_num, 1,
//         platform::errors::InvalidArgument(
//             "The inter_trainers_num:%llu should be larger than 1.",
//             inter_trainers_num));

//     int inter_trainer_id = trainer_id % inter_trainers_num;
//     for (size_t i = 0; i < inter_nccl_ids.size(); i++) {
//       VLOG(1) << "init inter_trainer_id:" << inter_trainer_id
//               << ", comm no:" << i;
//       auto local = new NCCLContextMap(places, inter_nccl_ids[i],
//                                       inter_trainers_num, inter_trainer_id);

//       h_inter_ctxs_.emplace_back(local);
//     }

//     int exter_trainer_id = -1;
//     if (trainer_id % inter_trainers_num == 0) {
//       exter_trainer_id = trainer_id / inter_trainers_num;
//     }

//     if (exter_trainer_id >= 0) {
//       for (size_t i = 0; i < exter_nccl_ids.size(); i++) {
//         auto ex = new NCCLContextMap(places, exter_nccl_ids[i],
//                                      exter_trainers_num, exter_trainer_id);
//         VLOG(1) << "init exter_trainer_id:" << exter_trainer_id
//                 << ", comm no:" << i;
//         h_exter_ctxs_.emplace_back(ex);
//       }
//     }
//   }

//   bool NeedExterAllReduce() const { return h_exter_ctxs_.size() > 0; }

//   NCCLContextMap *GetHierarchicalInterCtx(size_t run_order) const {
//     PADDLE_ENFORCE_GT(h_inter_ctxs_.size(), 0,
//                       platform::errors::InvalidArgument(
//                           "Hierarchical ctxs should be initialized firstly!"));
//     return h_inter_ctxs_[run_order % h_inter_ctxs_.size()].get();
//   }

//   NCCLContextMap *GetHierarchicalExterCtx(size_t run_order) const {
//     PADDLE_ENFORCE_GT(h_exter_ctxs_.size(), 0,
//                       platform::errors::InvalidArgument(
//                           "Hierarchical ctxs should be initialized firstly!"));
//     return h_exter_ctxs_[run_order % h_exter_ctxs_.size()].get();
//   }

//   std::vector<std::unique_ptr<NCCLContextMap>> *GetHierarchicalInterCtxs() {
//     return &h_inter_ctxs_;
//   }

//   std::vector<std::unique_ptr<NCCLContextMap>> *GetHierarchicalExterCtxs() {
//     return &h_exter_ctxs_;
//   }

//  protected:
//   // Support multi nccl comm on default nccl ring while NCCLContextMap can't.
//   std::vector<std::unique_ptr<NCCLContextMap>> flat_ctxs_;

//   // h_inter_ctxs_ and h_exter_ctxs_ are for 2d allreduce.
//   // And h_exter_ctxs_ can support multi comm too.
//   std::vector<std::unique_ptr<NCCLContextMap>> h_inter_ctxs_;
//   std::vector<std::unique_ptr<NCCLContextMap>> h_exter_ctxs_;

//   // just used for sync_batch_norm op.
//   std::unique_ptr<NCCLContextMap> sync_batch_norm_ctx_;
// };

}  // namespace platform
}  // namespace paddle
#endif