math_op_patch.py 5.5 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..framework import Variable, unique_name
from ..registry import OpProtoHolder

__all__ = ['monkey_patch_variable']


def monkey_patch_variable():
    def new_name():
        return unique_name("tmp")

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

    def create_scalar(block, value, dtype):
        value = float(value)
        tmp_name = new_name()
        var = block.create_var(name=tmp_name, shape=[1], dtype=dtype)
        block.append_op(
            type="fill",
            outputs={"Out": [var]},
            attrs={"value": [value],
                   "shape": [1],
                   "dtype": dtype})
        return var

    def create_tensor(block, value, dtype, shape):
        value = float(value)
        tmp_name = new_name()
        var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
            attrs={'dtype': var.dtype,
                   'shape': shape,
                   'value': value})
        return var

    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
        tmp_name = new_name()
        var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
        ref_var.block.append_op(
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
            attrs={'shape': ref_var.shape,
                   'value': value})
        return var

    def astype(self, dtype):
        """
        Cast a variable to data type.
        NOTE: The variable must be a Tensor
        Args:
            self(Variable): The source variable
            dtype: The target dtype

        Returns:
            Variable with new dtype
        """
        tmp_name = new_name()
        out = self.block.create_var(name=tmp_name, dtype=dtype)
        self.block.append_op(
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

    def _elemwise_method_creator_(method_name, op_type, reverse=False):
        def __impl__(self, other_var):
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
                            self.block,
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
                    # add fill_op to self.block
                    other_var = create_scalar(
                        self.block, value=other_var, dtype=lhs_dtype)

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

            tmp_name = new_name()
            out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
            self.block.append_op(
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
                outputs={'Out': out})
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
            other_var(Variable|float|int): right hand variable 

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
    for method_name, op_type, reverse in (
        ("__add__", "elementwise_add", False),
            # a+b == b+a. Do not need to reverse explicitly
        ("__radd__", "elementwise_add", False),
        ("__sub__", "elementwise_sub", False),
        ("__rsub__", "elementwise_sub", True),
        ("__mul__", "elementwise_mul", False),
            # a*b == b*a. Do not need to reverse explicitly
        ("__rmul__", "elementwise_mul", False),
        ("__div__", "elementwise_div", False),
        ("__rdiv__", "elementwise_div", True)):
        setattr(Variable, method_name,
                _elemwise_method_creator_(method_name, op_type, reverse))

    Variable.astype = astype