“28949f8ea6fb6ee6507758be1b6825b5c92d3eae”上不存在“paddle/git@gitcode.net:paddlepaddle/Paddle.git”
multiclass_nms_op.cc 16.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
Y
Yipeng 已提交
12

13 14
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
Y
Yipeng 已提交
16
#include "paddle/fluid/operators/detection/poly_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37 38
    auto score_dims = ctx->GetInputDim("Scores");

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
                        "The rank of Input(BBoxes) must be 3.");
      PADDLE_ENFORCE_EQ(score_dims.size(), 3,
                        "The rank of Input(Scores) must be 3.");
      PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                         box_dims[2] == 16 || box_dims[2] == 24 ||
                         box_dims[2] == 32,
                     "The 2nd dimension of Input(BBoxes) must be 4 or 8, "
                     "represents the layout of coordinate "
                     "[xmin, ymin, xmax, ymax] or "
                     "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                     "8 points: [xi, yi] i= 1,2,...,8 or "
                     "12 points: [xi, yi] i= 1,2,...,12 or "
                     "16 points: [xi, yi] i= 1,2,...,16");
      PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
                        "The 1st dimensiong of Input(BBoxes) must be equal to "
                        "3rd dimension of Input(Scores), which represents the "
                        "predicted bboxes.");
    }
59 60
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
Y
Yipeng 已提交
61
    ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
62
  }
D
dangqingqing 已提交
63 64 65 66 67 68 69

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>("Scores")->type()),
70
        platform::CPUPlace());
D
dangqingqing 已提交
71
  }
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
93
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
94 95 96 97 98
    sorted_indices->resize(top_k);
  }
}

template <class T>
99
static inline T BBoxArea(const T* box, const bool normalized) {
100
  if (box[2] < box[0] || box[3] < box[1]) {
D
dangqingqing 已提交
101 102 103
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
104 105 106 107 108 109
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
D
dangqingqing 已提交
110
      // If coordinate values are not within range [0, 1].
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

Y
Yipeng 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
    // If coordinate values are is invalid
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

151
template <typename T>
D
dangqingqing 已提交
152
class MultiClassNMSKernel : public framework::OpKernel<T> {
153 154 155 156 157 158 159
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
               const int64_t top_k, std::vector<int>* selected_indices) const {
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
160 161
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
162 163 164 165 166 167 168 169 170 171 172 173 174 175
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
176
      for (size_t k = 0; k < selected_indices->size(); ++k) {
177 178
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
179 180 181 182
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
            overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
183
                                        bbox_data + kept_idx * box_size, true);
Y
Yipeng 已提交
184 185 186 187 188 189 190 191
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
            overlap =
                PolyIoU<T>(bbox_data + idx * box_size,
                           bbox_data + kept_idx * box_size, box_size, true);
          }
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
207
  void MultiClassNMS(const framework::ExecutionContext& ctx,
208
                     const Tensor& scores, const Tensor& bboxes,
209 210
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
211 212 213
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
214 215
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
216
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
217 218 219 220 221 222 223 224

    int64_t class_num = scores.dims()[0];
    int64_t predict_dim = scores.dims()[1];
    int num_det = 0;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      Tensor score = scores.Slice(c, c + 1);
      NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
225 226
              &((*indices)[c]));
      num_det += (*indices)[c].size();
227 228
    }

229
    *num_nmsed_out = num_det;
230 231 232
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
233
      for (const auto& it : *indices) {
234 235 236
        int label = it.first;
        const T* sdata = scores_data + label * predict_dim;
        const std::vector<int>& label_indices = it.second;
237
        for (size_t j = 0; j < label_indices.size(); ++j) {
238 239 240 241 242 243 244
          int idx = label_indices[j];
          PADDLE_ENFORCE_LT(idx, predict_dim);
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
245 246
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
247 248 249 250
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
251
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
252 253 254 255
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
256 257
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
258 259 260
    }
  }

D
dangqingqing 已提交
261
  void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
262
                        const std::map<int, std::vector<int>>& selected_indices,
263
                        Tensor* outs) const {
Y
Yipeng 已提交
264 265 266
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
    int64_t out_dim = bboxes.dims()[1] + 2;
267 268 269 270 271 272 273 274
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();

    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
D
dangqingqing 已提交
275
      const std::vector<int>& indices = it.second;
276
      for (size_t j = 0; j < indices.size(); ++j) {
277
        int idx = indices[j];
Y
Yipeng 已提交
278 279 280 281 282
        const T* bdata = bboxes_data + idx * box_size;
        odata[count * out_dim] = label;           // label
        odata[count * out_dim + 1] = sdata[idx];  // score
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
283
        count++;
284 285 286 287 288
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
D
dangqingqing 已提交
289
    auto* boxes = ctx.Input<Tensor>("BBoxes");
290 291 292 293 294
    auto* scores = ctx.Input<Tensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto score_dims = scores->dims();

D
dangqingqing 已提交
295
    int64_t batch_size = score_dims[0];
296 297
    int64_t class_num = score_dims[1];
    int64_t predict_dim = score_dims[2];
298
    int64_t box_dim = boxes->dims()[2];
Y
Yipeng 已提交
299
    int64_t out_dim = boxes->dims()[2] + 2;
300 301 302 303 304 305

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
    for (int64_t i = 0; i < batch_size; ++i) {
      Tensor ins_score = scores->Slice(i, i + 1);
      ins_score.Resize({class_num, predict_dim});
306 307 308 309

      Tensor ins_boxes = boxes->Slice(i, i + 1);
      ins_boxes.Resize({predict_dim, box_dim});

310 311
      std::map<int, std::vector<int>> indices;
      int num_nmsed_out = 0;
312
      MultiClassNMS(ctx, ins_score, ins_boxes, &indices, &num_nmsed_out);
313 314 315 316 317 318
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
319 320
      T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
      od[0] = -1;
321
    } else {
Y
Yipeng 已提交
322
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
323 324 325
      for (int64_t i = 0; i < batch_size; ++i) {
        Tensor ins_score = scores->Slice(i, i + 1);
        ins_score.Resize({class_num, predict_dim});
326 327 328 329

        Tensor ins_boxes = boxes->Slice(i, i + 1);
        ins_boxes.Resize({predict_dim, box_dim});

330 331 332 333
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
334
          MultiClassOutput(ins_score, ins_boxes, all_indices[i], &out);
335 336 337 338 339 340 341 342 343 344 345
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
346
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
347
 public:
Y
Yu Yang 已提交
348
  void Make() override {
D
dangqingqing 已提交
349
    AddInput("BBoxes",
Y
Yipeng 已提交
350 351
             "(Tensor) A 3-D Tensor with shape "
             "[N, M, 4 or 8 16 24 32] represents the "
352 353
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
Y
Yipeng 已提交
354
             "[xmin, ymin, xmax, ymax], when box size equals to 4.");
D
dangqingqing 已提交
355 356
    AddInput("Scores",
             "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
357 358 359 360
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
             " Please note, M is equal to the 1st dimension of BBoxes. ");
D
dangqingqing 已提交
361
    AddAttr<int>(
362
        "background_label",
363
        "(int, defalut: 0) "
D
dangqingqing 已提交
364 365
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
366
        .SetDefault(0);
D
dangqingqing 已提交
367 368
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
369 370
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
371 372 373 374 375
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
376 377
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
D
dangqingqing 已提交
378
                   "The threshold to be used in NMS.")
379 380 381
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
382
                   "The parameter for adaptive NMS.")
383
        .SetDefault(1.0);
D
dangqingqing 已提交
384 385 386 387
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
388 389 390
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
391 392 393 394 395 396
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
397 398 399 400
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
401
This operator is to do multi-class non maximum suppression (NMS) on a batched
402 403
of boxes and scores.

D
dangqingqing 已提交
404 405 406 407 408 409 410
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.

411
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
412
per image if keep_top_k is larger than -1.
413

D
dangqingqing 已提交
414
This operator support multi-class and batched inputs. It applying NMS
415 416 417 418 419 420
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
421 422 423 424 425 426 427 428
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dangqingqing 已提交
429 430
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
                  ops::MultiClassNMSOpMaker,
431
                  paddle::framework::EmptyGradOpMaker);
D
dangqingqing 已提交
432 433
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);