test_recognize_digits.py 9.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Q
qingqing01 已提交
28
from paddle.fluid.layers.control_flow import ParallelDo
Y
Yang Yu 已提交
29 30 31 32 33 34 35

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
36
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
37 38
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
55
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
56 57 58 59 60 61 62 63 64 65
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


66 67 68 69 70
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
71 72
          params_filename=None,
          is_local=True):
73 74
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
75 76 77
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

78
    if nn_type == 'mlp':
Y
Yang Yu 已提交
79 80 81 82
        net_conf = mlp
    else:
        net_conf = conv_net

83
    if parallel:
84
        places = get_places()
Q
qingqing01 已提交
85
        pd = ParallelDo(places)
Y
Yang Yu 已提交
86 87 88
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
89 90
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
91 92 93 94
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
95 96
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
97
    else:
L
Liu Yiqun 已提交
98
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
99

100
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
101

W
Wu Yi 已提交
102
    optimizer = fluid.optimizer.Adam(learning_rate=0.001, LARS_weight_decay=0.3)
W
Wu Yi 已提交
103
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
104

105
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
106 107 108 109 110 111 112

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
113 114
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
115 116
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
148
                        print(
武毅 已提交
149 150
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
151
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
152 153 154 155 156 157 158
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
159 160
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
161 162 163 164
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
165
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
166
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
167 168
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
169
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
170
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
171 172 173 174 175 176 177 178
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
179 180


181 182 183 184
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
185 186 187
    if save_dirname is None:
        return

188
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
189 190
    exe = fluid.Executor(place)

191 192 193 194 195 196
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
197 198 199
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
200 201 202 203 204 205 206 207 208 209 210 211

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
212
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
213 214


215
def main(use_cuda, parallel, nn_type, combine):
216 217 218
    save_dirname = None
    model_filename = None
    params_filename = None
219 220
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
221
        if combine == True:
222 223
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
224

武毅 已提交
225
    # call train() with is_local argument to run distributed train
226 227 228 229
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
230
        save_dirname=save_dirname,
231 232
        model_filename=model_filename,
        params_filename=params_filename)
233 234 235
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
236 237
        model_filename=model_filename,
        params_filename=params_filename)
238 239 240 241 242 243


class TestRecognizeDigits(unittest.TestCase):
    pass


244
def inject_test_method(use_cuda, parallel, nn_type, combine):
245 246 247 248 249 250
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
251
                main(use_cuda, parallel, nn_type, combine)
252

253 254 255 256
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
257 258 259 260 261 262

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
263 264
        if use_cuda and not core.is_compiled_with_cuda():
            continue
265 266
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
267 268
                inject_test_method(use_cuda, parallel, nn_type, True)

269
    # Two unit-test for saving parameters as separate files
270
    inject_test_method(False, False, 'mlp', False)
271
    inject_test_method(False, False, 'conv', False)
272 273 274 275 276 277


inject_all_tests()

if __name__ == '__main__':
    unittest.main()