selected_rows_functor.cu 21.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#include <set>
16
#include <vector>
T
typhoonzero 已提交
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/selected_rows_functor.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
C
chengduo 已提交
20
#include "paddle/fluid/platform/float16.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
27 28
struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
29 30
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
31
    auto in1_height = input1.height();
32 33 34 35 36 37
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
38 39
    output->set_height(in1_height);

D
dzhwinter 已提交
40
    framework::Vector<int64_t> in1_rows(input1.rows());
41 42 43 44 45 46 47 48 49 50 51 52 53 54
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
55 56 57 58 59 60 61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
67 68 69 70 71

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
75
    auto in2_place = input2.place();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
79
    auto out_place = context.GetPlace();
80 81 82
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
83

84
    memory::Copy(out_place, out_data, in1_place, in1_data,
85
                 in1_value.numel() * sizeof(T), context.stream());
86 87

    auto* in2_data = in2_value.data<T>();
88
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
Q
QI JUN 已提交
89
                 in2_value.numel() * sizeof(T), context.stream());
90 91 92
  }
};

Q
QI JUN 已提交
93 94
template struct SelectedRowsAdd<platform::CUDADeviceContext, float>;
template struct SelectedRowsAdd<platform::CUDADeviceContext, double>;
95 96

namespace {
Q
QI JUN 已提交
97
template <typename T, int block_size>
98 99
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
100
                                            int64_t row_numel) {
C
chengduo 已提交
101
  const int ty = blockIdx.x;
102 103 104 105 106 107 108 109 110
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
111
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
112 113 114 115 116
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
117 118
struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
119
                  const phi::SelectedRows& input1,
120 121 122 123
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
124 125 126 127 128 129 130 131 132 133 134 135
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument(
            "The two inputs height must be equal."
            "But recieved first input height = [%d], first input height = [%d]",
            in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
136 137

    auto& in1_value = input1.value();
138
    auto& in1_rows = input1.rows();
139 140

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
141 142 143 144 145 146 147 148 149 150 151 152
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
153 154 155 156 157

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

158
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> functor;
C
chengduo 已提交
159
    functor(context, output, static_cast<T>(0));
160

Q
QI JUN 已提交
161
    const int block_size = 256;
162
    dim3 threads(block_size, 1);
C
chengduo 已提交
163
    dim3 grid(in1_rows.size(), 1);
164
    paddle::framework::MixVector<int64_t> mixv_in1_rows(&in1_rows);
Q
QI JUN 已提交
165 166
    SelectedRowsAddTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
167
        in1_data, mixv_in1_rows.CUDAData(context.GetPlace()), out_data,
Y
Yu Yang 已提交
168
        in1_row_numel);
169 170 171

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
172
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
173 174 175
  }
};

Q
QI JUN 已提交
176 177
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
178 179 180
template struct SelectedRowsAdd<platform::CUDADeviceContext, platform::float16>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext,
                                      platform::float16>;
Q
QI JUN 已提交
181 182

template <typename T>
Q
QI JUN 已提交
183 184
struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
185 186
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
187
    auto in1_height = input1.height();
188 189 190 191 192 193
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
194

195
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
196 197 198 199 200 201
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
202
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
Y
Fix CI  
Yu Yang 已提交
203
    if (in1_rows.size()) {
204
      mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Y
Fix CI  
Yu Yang 已提交
205
    }
Q
QI JUN 已提交
206 207

    auto in1_place = input1.place();
208 209 210
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
211
    auto in2_place = input2->place();
212 213 214
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
215 216 217

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
218
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
219
                 in1_value.numel() * sizeof(T), context.stream());
Q
QI JUN 已提交
220 221 222
  }
};

Q
QI JUN 已提交
223 224 225 226
template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
227 228
template struct SelectedRowsAddTo<platform::CUDADeviceContext,
                                  platform::float16>;
Q
QI JUN 已提交
229 230 231 232 233 234 235

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
C
chengduo 已提交
236
  const int ty = blockIdx.x;
Q
QI JUN 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
251 252
struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
253
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
QI JUN 已提交
254 255
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
256 257 258 259 260 261
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
262 263

    auto& in1_value = input1.value();
264
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
265 266

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
267 268 269 270 271 272
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
273 274 275 276 277

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
C
chengduo 已提交
278
    dim3 grid(in1_rows.size(), 1);
279
    paddle::framework::MixVector<int64_t> mixv_in1_rows(&in1_rows);
Q
QI JUN 已提交
280 281
    SelectedRowsAddToTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
282
        in1_data, mixv_in1_rows.CUDAData(context.GetPlace()), in2_data,
Y
Yu Yang 已提交
283
        in1_row_numel);
Q
QI JUN 已提交
284 285 286
  }
};

Q
QI JUN 已提交
287 288 289 290
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
291 292
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext,
                                        platform::float16>;
T
typhoonzero 已提交
293 294 295 296 297 298 299

namespace scatter {

template <typename T, int block_size>
__global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
                               T* out, const int64_t* out_rows,
                               size_t out_rows_size, int64_t row_numel) {
S
sneaxiy 已提交
300
  const int ty = blockIdx.x;
T
typhoonzero 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  int tid = threadIdx.x;
  __shared__ size_t out_idx;

  if (tid == 0) {
    for (size_t i = 0; i < out_rows_size; i++) {
      if (input_rows[ty] == out_rows[i]) {
        out_idx = i;
      }
    }
  }

  __syncthreads();

  input += ty * row_numel;
  out += out_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(out + index, input[index]);
  }
}

template <typename T>
T
typhoonzero 已提交
322
struct MergeAdd<platform::CUDADeviceContext, T> {
323 324 325 326
  phi::SelectedRows operator()(const platform::CUDADeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
S
sneaxiy 已提交
327 328 329 330 331
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CUDADeviceContext& context,
332
                  const phi::SelectedRows& input, phi::SelectedRows* output,
M
minqiyang 已提交
333
                  const bool sorted_result = false) {
D
dzhwinter 已提交
334
    framework::Vector<int64_t> input_rows(input.rows());
Q
Qiao Longfei 已提交
335 336 337 338
    if (input_rows.size() == 0) {
      return;
    }

339
    phi::SelectedRows& out = *output;
T
typhoonzero 已提交
340
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
Q
Qiao Longfei 已提交
341 342
    std::vector<int64_t> merge_rows_cpu(row_set.begin(), row_set.end());
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
T
typhoonzero 已提交
343 344

    auto input_width = input.value().dims()[1];
T
wip  
typhoonzero 已提交
345 346 347 348

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
349
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
T
typhoonzero 已提交
350 351
        context.GetPlace());

352
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
353
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
T
typhoonzero 已提交
354

T
wip  
typhoonzero 已提交
355
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
356 357 358 359
    auto* input_data = input.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
S
sneaxiy 已提交
360
    dim3 grid1(input_rows.size(), 1);
T
typhoonzero 已提交
361

362 363
    paddle::framework::MixVector<int64_t> mix_vector_input(&input_rows);
    paddle::framework::MixVector<int64_t> mix_vector_out(out.mutable_rows());
S
sneaxiy 已提交
364
    MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
365 366 367 368
        input_data, mix_vector_input.CUDAData(context.GetPlace()), out_data,
        mix_vector_out.CUDAMutableData(context.GetPlace()), out.rows().size(),
        input_width);
    mix_vector_out.CopyToCPU();
T
typhoonzero 已提交
369
  }
370 371

  void operator()(const platform::CUDADeviceContext& context,
372 373
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
374
    if (inputs.size() == 0) {
M
minqiyang 已提交
375
      VLOG(3) << "no input! return";
376 377
      return;
    }
378
    const phi::SelectedRows* has_value_input = nullptr;
379
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
380
      if (in->rows().size() > 0) {
381 382 383 384 385
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
386
      VLOG(3) << "no input has value! just return" << std::endl;
387 388 389 390
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
391
    phi::SelectedRows& out = *output;
392 393
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
394
      if (input->rows().size() == 0) {
395 396
        continue;
      }
397
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
398 399 400
                        platform::errors::InvalidArgument(
                            "All input should have same "
                            "dimension except for the first one."));
401
      PADDLE_ENFORCE_EQ(input_height, input->height(),
402 403
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
404 405
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
Q
Qiao Longfei 已提交
406
    std::vector<int64_t> merge_rows_cpu(merged_row_set.begin(),
Q
format  
Qiao Longfei 已提交
407
                                        merged_row_set.end());
Q
Qiao Longfei 已提交
408
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
409 410 411 412

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
413
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
414 415
        context.GetPlace());

416
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
417
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
418 419 420 421 422 423 424

    auto* out_data = out.mutable_value()->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);

    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
425
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
426 427
        continue;
      }
428 429
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();
430 431
      dim3 grid1(input_rows.size(), 1);

432 433
      paddle::framework::MixVector<int64_t> mix_vector_input(&input_rows);
      paddle::framework::MixVector<int64_t> mix_vector_out(out.mutable_rows());
434
      MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
435 436 437 438
          input_data, mix_vector_input.CUDAData(context.GetPlace()), out_data,
          mix_vector_out.CUDAMutableData(context.GetPlace()), out.rows().size(),
          input_width);
      mix_vector_out.CopyToCPU();
439 440
    }
  }
T
typhoonzero 已提交
441 442
};

T
typhoonzero 已提交
443 444 445 446
template struct MergeAdd<platform::CUDADeviceContext, float>;
template struct MergeAdd<platform::CUDADeviceContext, double>;
template struct MergeAdd<platform::CUDADeviceContext, int>;
template struct MergeAdd<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
447
template struct MergeAdd<platform::CUDADeviceContext, platform::float16>;
448 449 450
template struct MergeAdd<platform::CUDADeviceContext, platform::complex<float>>;
template struct MergeAdd<platform::CUDADeviceContext,
                         platform::complex<double>>;
T
wip  
typhoonzero 已提交
451 452 453 454 455

template <typename T, int block_size>
__global__ void UpdateToTensorKernel(const T* selected_rows,
                                     const int64_t* rows, const ScatterOps& op,
                                     T* tensor_out, int64_t row_numel) {
C
chengduo 已提交
456
  const int ty = blockIdx.x;
T
wip  
typhoonzero 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;
  // FIXME(typhoonzero): use macro fix the below messy code.
  switch (op) {
    case ScatterOps::ASSIGN:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index];
      }
      break;
    case ScatterOps::ADD:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] += selected_rows[index];
      }
      break;
    case ScatterOps::SUB:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] -= selected_rows[index];
      }
      break;
    case ScatterOps::SUBBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] - tensor_out[index];
      }
      break;
    case ScatterOps::MUL:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] *= selected_rows[index];
      }
      break;
    case ScatterOps::DIV:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] /= selected_rows[index];
      }
      break;
    case ScatterOps::DIVBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] / tensor_out[index];
      }
      break;
  }
}

template <typename T>
T
typhoonzero 已提交
502 503
struct UpdateToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
504
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
505
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
506 507
    // NOTE: Use SelectedRowsAddToTensor for better performance
    //       no additional MergeAdd called.
T
typhoonzero 已提交
508 509
    MergeAdd<platform::CUDADeviceContext, T> merge_func;
    auto merged_in1 = merge_func(context, input1);
T
wip  
typhoonzero 已提交
510 511 512

    auto in1_height = merged_in1.height();
    auto in2_dims = input2->dims();
513 514 515 516 517 518
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
519 520 521 522 523

    auto& in1_value = merged_in1.value();
    auto& in1_rows = merged_in1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
524 525 526 527 528 529
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
530

T
typhoonzero 已提交
531 532
    auto* in1_data = in1_value.template data<T>();
    auto* in2_data = input2->data<T>();
T
wip  
typhoonzero 已提交
533

T
typhoonzero 已提交
534
    dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1);
C
chengduo 已提交
535
    dim3 grid(in1_rows.size(), 1);
T
typhoonzero 已提交
536
    UpdateToTensorKernel<T, platform::PADDLE_CUDA_NUM_THREADS><<<
D
dzhwinter 已提交
537 538
        grid, threads, 0, context.stream()>>>(in1_data, in1_rows.cuda_data(),
                                              op, in2_data, in1_row_numel);
T
wip  
typhoonzero 已提交
539 540
  }
};
T
typhoonzero 已提交
541
}  // namespace scatter
542 543 544
}  // namespace math
}  // namespace operators
}  // namespace paddle