sequence_padding.cu 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yiqun Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/math/sequence_padding.h"
Y
Yiqun Liu 已提交
17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

F
fengjiayi 已提交
22
template <typename T, CopyType Type>
23
__global__ void SequencePaddingKernel(
F
fengjiayi 已提交
24 25 26
    T* dst, const T* src, const T* pad_value, bool is_constant_pad,
    const size_t* seq_offsets, const size_t& seq_num, const size_t& pad_seq_len,
    const size_t& step_width, bool norm_by_len, const PadLayout& layout) {
Y
yangyaming 已提交
27
  size_t seq_idx = blockIdx.y;
F
fengjiayi 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  size_t seq_len = seq_offsets[seq_idx + 1] - seq_offsets[seq_idx];

  size_t step_idx = blockIdx.x * blockDim.y + threadIdx.y;
  size_t seq_data_offset = (seq_offsets[seq_idx] + step_idx) * step_width;
  size_t pad_data_offset = layout == kBatchLengthWidth
                               ? (seq_idx * pad_seq_len + step_idx) * step_width
                               : (step_idx * seq_num + seq_idx) * step_width;

  T* dst_data = dst + (Type == kSeqToPad ? pad_data_offset : seq_data_offset);
  const T* src_data =
      src + (Type == kSeqToPad ? seq_data_offset : pad_data_offset);

  if (step_idx < seq_len) {
    float scale = norm_by_len ? (1.0f / static_cast<float>(seq_len)) : 1.0f;
    for (size_t i = threadIdx.x; i < step_width; i += blockDim.x) {
      dst_data[i] = scale * src_data[i];
Y
Yiqun Liu 已提交
44
    }
F
fengjiayi 已提交
45 46 47
  } else if (step_idx < pad_seq_len && Type == kSeqToPad) {
    for (size_t i = threadIdx.x; i < seq_width; i += blockDim.x) {
      dst_data[i] = is_constant_pad ? pad_value[0] : pad_value[i];
Y
Yiqun Liu 已提交
48 49 50 51
    }
  }
}

Y
yangyaming 已提交
52 53
template <typename T>
class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
Y
Yiqun Liu 已提交
54 55
 public:
  void operator()(const platform::CUDADeviceContext& context,
56
                  const framework::LoDTensor& seq_tensor,
Y
yangyaming 已提交
57
                  framework::Tensor* pad_tensor,
F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66 67 68 69
                  const framework::LoDTensor& pad_value, int pad_seq_len = -1,
                  int lod_level = 0, bool norm_by_times = false,
                  const PadLayout layout = kBatchLengthWidth) {
    auto seq_lod = seq_tensor.lod();
    const auto seq_offsets = framework::ToAbsOffset(seq_lod)[lod_level];
    const auto& seq_tensor_dims = seq_tensor.dims();
    const auto& pad_tensor_dims = pad_tensor->dims();
    if (pad_seq_len == -1) {
      pad_seq_len = MaximumSequenceLength(seq_offsets);
    }
    int step_width = seq_tensor.numel() / seq_tensor_dims[0];
    int seq_num = seq_offset.size() - 1;
70

F
fengjiayi 已提交
71 72 73 74 75
    CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
              step_width, layout);
    PADDLE_ENFORCE(pad_value.numel() == 1 || pad_value.numel() == step_width,
                   "The numel of 'pad_value' can only be 1 or be equal to the "
                   "'step_width'.");
76

F
fengjiayi 已提交
77
    if (!norm_by_times && seq_num == 1UL && pad_seq_len == -1) {
Y
yangyaming 已提交
78 79
      TensorCopy(seq_tensor, context.GetPlace(), context, pad_tensor);
      pad_tensor->Resize(pad_tensor_dims);
Y
Yiqun Liu 已提交
80 81 82
      return;
    }

Y
Yancey1989 已提交
83
    const int64_t kBlockSize = 512;
Y
Yiqun Liu 已提交
84 85 86 87 88

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
F
fengjiayi 已提交
89
        std::min(((((step_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
Y
Yiqun Liu 已提交
90 91 92
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

F
fengjiayi 已提交
93
    size_t grid_dim_x = (pad_seq_len + block_dim_y - 1) / block_dim_y;
94
    size_t grid_dim_y = seq_num;
Y
Yiqun Liu 已提交
95 96
    dim3 grid(grid_dim_x, grid_dim_y);

97
    const T* seq_data = seq_tensor.data<T>();
Y
yangyaming 已提交
98
    T* pad_data = pad_tensor->data<T>();
F
fengjiayi 已提交
99
    const T* pad_value_data = pad_value.data<T>();
100

F
fengjiayi 已提交
101 102 103 104
    SequencePaddingKernel<T, kSeqToPad><<<grid, threads, 0, context.stream()>>>(
        pad_data, seq_data, pad_value_data, pad_value.numel() == 1,
        seq_offset.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
        step_width, norm_by_times, layout);
Y
Yiqun Liu 已提交
105 106 107
  }
};

Y
yangyaming 已提交
108 109
template <typename T>
class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
Y
Yiqun Liu 已提交
110 111
 public:
  void operator()(const platform::CUDADeviceContext& context,
F
fengjiayi 已提交
112 113 114 115 116 117 118 119 120 121 122 123
                  const framework::LoDTensor& pad_tensor,
                  framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
                  int lod_level = 0, bool norm_by_times = false,
                  const PadLayout layout = kBatchLengthWidth) {
    auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
    const auto& seq_tensor_dims = seq_tensor->dims();
    const auto& pad_tensor_dims = pad_tensor.dims();
    if (pad_seq_len == -1) {
      pad_seq_len = MaximumSequenceLength(seq_offsets);
    }
    int step_width = seq_tensor->numel() / seq_tensor_dims[0];
    int seq_num = seq_offset.size() - 1;
Y
yangyaming 已提交
124

F
fengjiayi 已提交
125 126
    CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
              step_width, layout);
127

F
fengjiayi 已提交
128
    if (!norm_by_times && seq_num == 1UL && pad_seq_len == -1) {
Y
yangyaming 已提交
129 130
      TensorCopy(pad_tensor, context.GetPlace(), context, seq_tensor);
      seq_tensor->Resize(seq_tensor_dims);
Y
Yiqun Liu 已提交
131 132 133
      return;
    }

Y
Yancey1989 已提交
134
    const int64_t kBlockSize = 512;
Y
Yiqun Liu 已提交
135 136 137 138 139

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
F
fengjiayi 已提交
140
        std::min(((((step_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
Y
Yiqun Liu 已提交
141 142 143
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

F
fengjiayi 已提交
144
    size_t grid_dim_x = (pad_seq_len + block_dim_y - 1) / block_dim_y;
145
    size_t grid_dim_y = seq_num;
Y
Yiqun Liu 已提交
146 147
    dim3 grid(grid_dim_x, grid_dim_y);

Y
yangyaming 已提交
148
    const T* pad_data = pad_tensor.data<T>();
149 150
    T* seq_data = seq_tensor->data<T>();

F
fengjiayi 已提交
151 152 153 154
    SequencePaddingKernel<T, kPadToSeq><<<grid, threads, 0, context.stream()>>>(
        seq_data, pad_data, nullptr, false,
        seq_offset.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
        step_width, norm_by_times, layout);
Y
Yiqun Liu 已提交
155 156 157
  }
};

Y
yangyaming 已提交
158 159 160 161 162 163 164 165 166
template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, int>;
template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, int64_t>;
template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;
template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, double>;

template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, int>;
template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, int64_t>;
template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;
template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, double>;
Y
Yiqun Liu 已提交
167 168 169 170

}  // namespace math
}  // namespace operators
}  // namespace paddle