gen_code.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/gen_code/gen_code.h"
#include <algorithm>
#include <string>
#include <vector>

namespace paddle {
namespace lite {
namespace gencode {

void Module::AddWeight(const std::string &name, const TensorRepr &tensor) {
  auto w_name = WeightUniqueName();
  Line(string_format("// Create weight: %s", name.c_str()));
  // auto* w0 = scope.Var("w0")->GetMutable<lite::Tensor>();
  Line(string_format("auto* %s = scope->Var(%s)->GetMutable<lite::Tensor>();",
                     w_name.c_str(), Repr(name).c_str()));
  // lite::DDim w_ddim({1, 2})
  Line(string_format("lite::DDim %s_ddim(std::vector<int64_t>(%s));",
                     w_name.c_str(), tensor.ddim.repr().c_str()));
  // std::vector<float> w_data({});
  auto w_data_repr = DataRepr(
      std::string(static_cast<const char *>(tensor.raw_data), tensor.num_bytes),
      tensor.dtype);
  Line(string_format("std::vector<%s> %s_data({%s});",
                     PrecisionToStr(tensor.dtype).c_str(), w_name.c_str(),
                     w_data_repr.c_str()));
  // w0->Assign<float, lite::DDim, TARGET(kX86)>(w0_data.data(), w0_ddim);
  Line(string_format(
      "%s->Assign<%s, lite::DDim, TARGET(kX86)>(%s_data.data(), %s_ddim);",
      w_name.c_str(), PrecisionToStr(tensor.dtype).c_str(), w_name.c_str(),
      w_name.c_str()));
  Line("");
}

void Module::AddHeaderIncludeGenCode() {
  Line("");
  Line("#include <string>");
  Line("#include <vector>");
  Line("#include \"paddle/fluid/lite/core/compatible_tensor.h\"");
  Line("#include \"paddle/fluid/lite/core/context.h\"");
  Line("#include \"paddle/fluid/lite/gen_code/paddle_infer.h\"");
  Line("#include \"paddle/fluid/lite/core/op_registry.h\"");
  Line("#include \"paddle/fluid/lite/core/scope.h\"");
  Line("#include \"paddle/fluid/lite/model_parser/cpp/op_desc.h\"");
  Line("");
  Line("");
}

std::string Module::DataRepr(const std::string &raw_data, PrecisionType dtype) {
  std::stringstream ss;
  switch (dtype) {
    case PRECISION(kFloat): {
      const float *raw = reinterpret_cast<const float *>(raw_data.c_str());
      int num_elems = raw_data.size() / sizeof(float);
      if (num_elems) {
        for (int i = 0; i < num_elems - 1; i++) {
          ss << raw[i] << ",";
        }
        ss << raw[num_elems - 1];
      }
    } break;

    default:
      LOG(FATAL) << "Unsupported type " << PrecisionToStr(dtype);
  }
  return ss.str();
}

void Module::AddOpDescHelper(const std::string &op_id,
                             const cpp::OpDesc &desc) {
  std::string desc_var = op_id + "_desc";
  Line(string_format("lite::cpp::OpDesc %s;", desc_var.c_str()));
  auto vec_str_repr = [](const std::vector<std::string> &vec) {
    return Repr(vec);
  };
  for (auto &item : desc.inputs()) {
    Line(string_format("%s.SetInput(%s, %s);", desc_var.c_str(),
                       Repr(item.first).c_str(),
                       vec_str_repr(item.second).c_str()));
  }

  for (auto &item : desc.outputs()) {
    Line(string_format("%s.SetOutput(%s, %s);", desc_var.c_str(),
                       Repr(item.first).c_str(),
                       vec_str_repr(item.second).c_str()));
  }

  auto attr_repr = [&](const std::string &name) -> std::string {
    using AttrType = OpDescAPI::AttrType;
    auto type = desc.GetAttrType(name);

    switch (type) {
      case AttrType::INT:
        return std::to_string(desc.GetAttr<int>(name));
      case AttrType::FLOAT:
        return std::to_string(desc.GetAttr<float>(name));
      case AttrType::BOOLEAN:
        return std::to_string(desc.GetAttr<bool>(name));
      case AttrType::STRING:
        return "\"" + desc.GetAttr<std::string>(name) + "\"";
C
Chunwei 已提交
114 115 116 117 118 119 120 121 122
      case AttrType::FLOATS: {
        auto vals = desc.GetAttr<std::vector<float>>(name);
        return "{" + Join(vals, ",") + "}";
      }
      case AttrType::INTS: {
        auto vals = desc.GetAttr<std::vector<int>>(name);
        return "{" + Join(vals, ",") + "}";
      }

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
      case AttrType::STRINGS: {
        std::vector<std::string> tmp;
        auto vals = desc.GetAttr<std::vector<std::string>>(name);
        std::transform(vals.begin(), vals.end(), std::back_inserter(tmp),
                       [](const std::string &x) { return Repr(x); });
        return "{" + Join(tmp, ",") + "}";
      }
      default:
        LOG(FATAL) << "Unsupported attribute type: " << static_cast<int>(type);
    }
    return "";
  };

  auto attr_type_repr = [&](const std::string &name) -> std::string {
    using AttrType = OpDescAPI::AttrType;
    auto type = desc.GetAttrType(name);

    switch (type) {
      case AttrType::INT:
        return "int";
      case AttrType::FLOAT:
        return "float";
      case AttrType::BOOLEAN:
        return "bool";
      case AttrType::STRING:
        return "std::string";
C
Chunwei 已提交
149 150
      case AttrType::FLOATS:
        return "std::vector<float>";
151 152
      case AttrType::STRINGS:
        return "std::vector<std::string>";
C
Chunwei 已提交
153 154
      case AttrType::INTS:
        return "std::vector<int>";
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      default:
        LOG(FATAL) << "Unsupported attribute type: " << static_cast<int>(type);
    }

    return "unk_t";
  };
  for (auto &item : desc.AttrNames()) {
    // Drop the python information.
    if (item == "op_callstack") continue;
    auto attr_type = attr_type_repr(item);
    auto attr_val = attr_repr(item);
    Line(string_format("%s.SetAttr<%s>(%s, %s);",  //
                       desc_var.c_str(), attr_type.c_str(), Repr(item).c_str(),
                       attr_val.c_str()));
  }
}

void Module::AddOp(const cpp::OpDesc &op) {
  auto op_name = OpUniqueName();
  AddOpDescHelper(op_name, op);

C
Chunwei 已提交
176 177
  LOG(INFO) << "add op " << op_name;

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  Line(string_format("// Create Op: %s", op.Type().c_str()));

  Line(string_format("auto %s = lite::LiteOpRegistry::Global().Create(\"%s\");",
                     op_name.c_str(), op.Type().c_str()));

  CHECK(op.HasAttr(kKernelTypeAttr))
      << "the kernel type should be specified before generate code.";
  auto kernel_type = op.GetAttr<std::string>(kKernelTypeAttr);
  Line(string_format("%s->Attach(%s, exec_scope);", op_name.c_str(),
                     (op_name + "_desc").c_str()));

  // Create kernel
  auto kernel_name = KernelUniqueName();
  Line(string_format(
      "auto %s = std::move(%s->CreateKernels(valid_places, \"%s\").front());",
      kernel_name.c_str(), op_name.c_str(), kernel_type.c_str()));

  // Set Context for kernel
  // clang-format off
  Line(string_format("%s->SetContext(lite::ContextScheduler::Global().NewContext(%s->target()));", kernel_name.c_str(), kernel_name.c_str()));  // NOLINT
  // clang-format on

  Line(string_format("ops.push_back(%s);", op_name.c_str()));
  Line(string_format("kernels.push_back(std::move(%s));", kernel_name.c_str()));

  op_kinds_.insert(op.Type());
  kernel_kinds_.insert(kernel_type);
}
}  // namespace gencode
}  // namespace lite
}  // namespace paddle