axpy_handler.cc 4.1 KB
Newer Older
L
lidanqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cinttypes>
#include <memory>
#include <string>
#include <vector>

#include "mkldnn.hpp"
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {

namespace plat = paddle::platform;

namespace {

template <typename T>
35
class AXPYHandler {
L
lidanqing 已提交
36
 public:
37 38 39 40 41 42 43 44 45 46 47
  AXPYHandler(const dnnl::engine mkldnn_engine, int n, float alpha) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
    auto md = dnnl::memory::desc({n}, plat::MKLDNNGetDataType<T>(),
                                 dnnl::memory::format_tag::x);
    src_mem_ = dnnl::memory(md, mkldnn_engine, DNNL_MEMORY_NONE);
    dst_mem_ = dnnl::memory(md, mkldnn_engine, DNNL_MEMORY_NONE);
    dnnl::primitive_attr reorder_attr;
    dnnl::post_ops post_operations;
    if (alpha != 1.f) {
      std::vector<float> scales(1, alpha);
      reorder_attr.set_output_scales(0, scales);
L
lidanqing 已提交
48
    }
49
    post_operations.append_sum(1.0f);
L
lidanqing 已提交
50

51 52
    reorder_attr.set_post_ops(post_operations);
    reorder_p_ = dnnl::reorder(src_mem_, dst_mem_, reorder_attr);
L
lidanqing 已提交
53 54
  }

55 56 57
  dnnl::memory &AcquireSrcMemory(const T *x) {
    src_mem_.set_data_handle(plat::to_void_cast<T>(x));
    return src_mem_;
L
lidanqing 已提交
58 59
  }

60 61 62
  dnnl::memory &AcquireDstMemory(T *y) {
    dst_mem_.set_data_handle(y);
    return dst_mem_;
L
lidanqing 已提交
63 64
  }

65 66
  const dnnl::reorder &AcquireReorder() { return reorder_p_; }

L
lidanqing 已提交
67
 private:
68 69 70
  dnnl::memory src_mem_;
  dnnl::memory dst_mem_;
  dnnl::reorder reorder_p_;
L
lidanqing 已提交
71 72
};

73 74
template class AXPYHandler<float>;
template class AXPYHandler<plat::bfloat16>;
L
lidanqing 已提交
75 76 77 78 79 80 81 82 83 84

template <typename T>
static void naive_axpy(int n, T alpha, const T *x, T *y) {
  while (n-- > 0) {
    *y += alpha * *x;
    ++y;
    ++x;
  }
}

85 86
}  // anonnymouse namespace

L
lidanqing 已提交
87
template <typename T>
88 89 90 91 92 93 94 95 96 97
class OneDNNAXPYHandler<T>::Impl {
 public:
  Impl(int64_t n, T alpha);
  void operator()(const T *x, T *y);

 private:
  std::unique_ptr<AXPYHandler<T>> handler_;
  int64_t n_;
  T alpha_;
};
L
lidanqing 已提交
98

99 100
template <typename T>
OneDNNAXPYHandler<T>::Impl::Impl(int64_t n, T alpha) : n_{n}, alpha_{alpha} {
L
lidanqing 已提交
101 102 103 104 105
  auto &pool = plat::DeviceContextPool::Instance();
  auto cpu_place = plat::CPUPlace();
  auto *dev_ctx =
      dynamic_cast<plat::MKLDNNDeviceContext *>(pool.Get(cpu_place));
  auto &cpu_engine = dev_ctx->GetEngine();
106 107 108
  handler_ = std::make_unique<AXPYHandler<T>>(cpu_engine, n,
                                              static_cast<float>(alpha));
}
L
lidanqing 已提交
109

110 111 112 113 114 115
template <typename T>
void OneDNNAXPYHandler<T>::Impl::operator()(const T *x, T *y) {
  if (this->n_ < 100) {
    naive_axpy(this->n_, this->alpha_, x, y);
    return;
  }
L
lidanqing 已提交
116

117 118 119
  auto &reorder_src_mem_p = handler_->AcquireSrcMemory(x);
  auto &reorder_dst_mem_p = handler_->AcquireDstMemory(y);
  auto reorder_p = handler_->AcquireReorder();
L
lidanqing 已提交
120
  auto &astream = plat::MKLDNNDeviceContext::tls().get_stream();
121
  reorder_p.execute(astream, reorder_src_mem_p, reorder_dst_mem_p);
L
lidanqing 已提交
122 123 124
  astream.wait();
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
OneDNNAXPYHandler<T>::OneDNNAXPYHandler(int64_t n, T alpha)
    : pimpl_{new Impl{n, alpha}, [](Impl *impl) { delete impl; }} {
  VLOG(4) << "[OneDNN] OneDNNAXPYHandler<" << typeid(T).name() << ">, "
          << "n: " << n << ", alpha: " << alpha;
}

template <typename T>
void OneDNNAXPYHandler<T>::operator()(const T *x, T *y) {
  pimpl_->operator()(x, y);
}

template class OneDNNAXPYHandler<float>;
template class OneDNNAXPYHandler<plat::bfloat16>;
L
lidanqing 已提交
139 140 141

}  // namespace operators
}  // namespace paddle