ngraph_engine.cc 22.4 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
44
    sp.emplace_back(k);
B
baojun 已提交
45 46 47 48
  }
  return sp;
}

49 50 51 52 53 54 55 56 57
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
58 59 60 61 62 63
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
64
        {framework::proto::VarType::UINT8, ngraph::element::u8},
65 66 67 68 69 70 71 72
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
73
        {ngraph::element::u8, framework::proto::VarType::UINT8},
74 75 76 77 78 79
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;
80
bool NgraphEngine::is_training = false;
81 82 83 84 85

std::unordered_map<std::string, EngineCache> NgraphEngine::engine_cache = {};
std::unordered_map<std::string,
                   std::vector<std::shared_ptr<ngraph::runtime::Tensor>>>
    NgraphEngine::t_in_cache_ = {};
B
baojun 已提交
86 87 88 89 90

std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
91 92 93
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
94
  std::vector<std::vector<int>> intervals;
95 96

  int size = ops->size();
B
baojun 已提交
97
  int left = 0;
B
baojun 已提交
98
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
99
         ops->at(left)->Type() != "read" &&
B
baojun 已提交
100
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
101 102
    ++left;
  }
103

104 105
  while (left < size && (ops->at(left)->Type() == framework::kFeedOpType ||
                         ops->at(left)->Type() == "read")) {
106 107 108 109 110
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
111 112 113 114
    ++left;
  }

  int right = left;
115
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
116 117 118
    ++right;
  }

119 120 121 122 123 124 125 126 127 128
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
129 130 131 132
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
133 134 135
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
136
    auto op_type = ops->at(pivot)->Type();
137
    if (NgraphBridge::isRegister(op_type)) {
B
baojun 已提交
138 139 140 141
      ++pivot;
    } else {
      int start = pivot, end = start;
      while (pivot < right &&
142
             (!NgraphBridge::isRegister(ops->at(pivot)->Type()))) {
B
baojun 已提交
143 144 145 146
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
147
      intervals.emplace_back(interval);
B
baojun 已提交
148 149 150 151 152
    }
  }  // end while
  return intervals;
}

153 154 155 156 157 158 159 160
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);
161 162
  ng_op_desc.SetInput("Xs", std::vector<std::string>(0));
  ng_op_desc.SetOutput("Ys", std::vector<std::string>(0));
163 164 165 166

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
221 222 223 224 225
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
226
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
227 228 229 230 231 232 233
    : scope_(scope), place_(place) {
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

234
  GetNgFunction(ctx);
B
baojun 已提交
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void NgraphEngine::Prepare(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string serialized_graph = ctx.Attr<std::string>("graph");

  auto input_vars = ctx.Inputs("Xs");
  if (!input_vars.empty()) {
    feed_vars = input_vars;
    var_in_ = input_vars;
  }
  auto output_vars = ctx.Outputs("Ys");
  if (!output_vars.empty()) {
    var_out_ = output_vars;
  }

  framework::proto::BlockDesc block_proto;
  if (!serialized_graph.empty()) block_proto.ParseFromString(serialized_graph);
  framework::BlockDesc block_desc(nullptr, &block_proto);
  if (!serialized_graph.empty()) {
    NgraphEngine::p_bdesc = &block_desc;
  }

B
baojun 已提交
258
  bool has_fetch = false, is_full = false;
259
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

286 287 288
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
289 290 291
    if (op_desc->Type() == framework::kFetchOpType) {
      has_fetch = true;
    }
B
baojun 已提交
292 293
  }

294
  for (auto op_desc : ops_desc) {
B
baojun 已提交
295
    if (op_desc->Type().find("_grad") != std::string::npos) {
296
      is_training = true;
297
      this->is_test_ = false;
B
baojun 已提交
298 299 300 301
      break;
    }
  }

302 303 304
  if (interval[0] > 0 &&
      ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
      interval[1] < static_cast<int>(ops_desc.size()) &&
B
baojun 已提交
305 306
      ops_desc.at(interval[1])->Type() == framework::kFetchOpType) {
    is_full = true;
B
baojun 已提交
307 308
  }

B
baojun 已提交
309
  if (is_full) {
310 311 312 313
    this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
  } else {
    this->op_state_ =
        this->is_test_ ? OpState::PARTIAL_TEST : OpState::PARTIAL_TRAIN;
B
baojun 已提交
314 315
  }

316 317 318 319 320 321
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
B
baojun 已提交
322 323
  while (idx < static_cast<int>(ops_desc.size()) &&
         ops_desc.at(idx)->Type() != framework::kFetchOpType) {
324 325
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
326
      for (auto& var_name : var_name_item.second) {
327
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
328 329
      }
    }
330
    ++idx;
B
baojun 已提交
331
  }
332

B
baojun 已提交
333 334 335 336
  if (!has_fetch) {
    op_state_ = OpState::UNKNOWN;
  }

337 338 339 340 341 342 343 344 345
  if (var_in_.empty() && var_out_.empty()) {
    BuildNgIO(ops_desc, interval);
  }
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
346 347
}

348 349
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
350 351
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
352 353
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
354 355 356 357 358 359
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
360 361
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
362
          // fill var_in here to keep lhs and rhs order
363
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
379 380
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
381 382 383 384 385
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
386
        switch (this->op_state_) {
B
baojun 已提交
387 388
          case OpState::PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
389 390 391
                find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
392 393 394
            }
            break;
          case OpState::FULL_TEST:
395 396 397
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
398 399 400
            }
            break;
          case OpState::PARTIAL_TRAIN:
401 402
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
403 404
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
405
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
406 407 408
            }
            break;
          case OpState::FULL_TRAIN:
409 410
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
411
                persistables_.find(var_name) != persistables_.end()) {
412
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
413 414 415
            }
            break;
          default:
416
            this->var_out_.emplace_back(var_name);
B
baojun 已提交
417 418 419 420 421 422
        }
      }
    }
  }
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }
  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

void NgraphEngine::RunInferShape() {
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
    op->RuntimeInferShape(scope_, place_, ctx);
  }
}

469 470
void NgraphEngine::BuildNgFunction(const framework::ExecutionContext& ctx) {
  Prepare(ctx);
471 472
  RunInferShape();
  GetNgInputShape();
B
baojun 已提交
473 474 475 476 477 478
  BuildNgNodes();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
479
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
480 481 482 483 484 485
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
486
    func_inputs.emplace_back(prm);
B
baojun 已提交
487 488 489 490 491 492
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

493 494 495
void NgraphEngine::GetNgFunction(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");
496 497 498
  bool use_cache = true;
  if (use_cache) {
    this->func_cache_key_ = "";
499
    for (int i = 0; i < static_cast<int>(feed_vars.size()); ++i) {
500 501 502 503 504 505 506
      auto* var = scope_.FindVar(feed_vars[i]);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto dims = tensor_pd->dims();
        for (int j = 0; j < dims.size(); ++j) {
          func_cache_key_ += std::to_string(dims[j]);
        }
B
baojun 已提交
507 508
      }
    }
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    func_cache_key_ += std::to_string(interval[0]) + "_" +
                       std::to_string(interval[1]) + engine_key;
    func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

    if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
      if (engine_cache[func_cache_key_].persistables.size() == 0) {
        engine_cache.clear();
        t_in_cache_.clear();
      } else {
        auto var_name = engine_cache[func_cache_key_].persistables.begin();
        framework::Variable* var = scope_.FindVar(*var_name);
        if (var != pre_var_ptr) {
          engine_cache.clear();
          t_in_cache_.clear();
        }
        pre_var_ptr = var;
      }
    }

    if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
529
      BuildNgFunction(ctx);
530 531 532 533 534 535
      engine_cache[func_cache_key_].ngraph_function = this->ngraph_function_;
      engine_cache[func_cache_key_].persistables = this->persistables_;
      engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
      engine_cache[func_cache_key_].var_in = this->var_in_;
      engine_cache[func_cache_key_].var_out = this->var_out_;
      engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
536 537
    }
  } else {
538
    BuildNgFunction(ctx);
B
baojun 已提交
539 540 541 542 543
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  std::shared_ptr<ngraph::Function> ng_func;
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

  bool use_cache = true;
  if (use_cache) {
    PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                   "Cannot find cached data to run ngraph function");
    ng_func = engine_cache[func_cache_key_].ngraph_function;
    p_persistables = &(engine_cache[func_cache_key_].persistables);
    p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
    p_var_in = &(engine_cache[func_cache_key_].var_in);
    p_var_out = &(engine_cache[func_cache_key_].var_out);
    is_test = engine_cache[func_cache_key_].is_test;
  } else {
    ng_func = ngraph_function_;
    p_persistables = &this->persistables_;
    p_var_in_updates = &this->var_in_updates_;
    p_var_in = &this->var_in_;
    p_var_out = &this->var_out_;
    is_test = this->is_test_;
  }
B
baojun 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

  auto m_parameters = ng_func->get_parameters();
  auto m_results = ng_func->get_results();
  if (is_test && use_cache &&
      t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
590
      } else {
591
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
592
      }
593 594 595 596
    }
  } else {
    if (is_test && use_cache) {
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
597
    } else {
598
      p_t_in = &t_in;
B
baojun 已提交
599
    }
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
618
      if (!is_training && is_test && is_persistable) {
619 620 621
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
622 623 624
    }
  }

625 626 627
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
628 629
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
630 631
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
632
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
633 634 635 636 637
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
638 639 640 641 642
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

643 644
  auto handle = backend_->compile(ng_func);
  handle->call_with_validate(t_out, *p_t_in);
B
baojun 已提交
645 646 647
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle