async_optimizer.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase


class AsyncMetaOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(AsyncMetaOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _is_graph_out(self):
        return False

    def _can_apply(self):
        if self.role_maker._is_collective:
            return False
        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False

    def _get_distributed_strategy(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        strategy = None

        if not self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if self.user_defined_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def _build_trainer_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker

        _main = compiled_config.origin_main_program.clone()
        _startup = compiled_config.origin_startup_program.clone()

        if not compiled_config.is_geo_mode():
            # for main program
            _main = worker.delete_optimizer_pass(_main, compiled_config)
            _main = worker.distributed_ops_pass(_main, compiled_config)
            _main = worker.append_send_ops_pass(_main, compiled_config)

            # for startup program
            _startup = worker.fake_init_ops_pass(_startup, compiled_config)
            _startup = worker.delet_extra_optimizes_pass(_startup,
                                                         compiled_config)
        else:
            _main = worker.append_send_ops_pass(_main, compiled_config)
            _startup = _startup

        return _main, _startup

    def _build_pserver_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server

        _main = fluid.Program()
        _startup = fluid.Program()

        if not compiled_config.is_geo_mode():
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)

            if not compiled_config.is_sync_mode():
                _main = server.delete_unused_in_main_pass(_main,
                                                          compiled_config)

            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)
        else:
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_geo_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)
            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)

        return _main, _startup

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
        strategy = self._get_distributed_strategy()

        _origin_main_program = loss.block.program
        _origin_startup_program = startup_program
        from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

        compiled_config = public.CompileTimeStrategy(_origin_main_program,
                                                     _origin_startup_program,
                                                     strategy, self.role_maker)

        main_program, startup_program = \
            self._build_trainer_programs(compiled_config) if self.role_maker.is_worker() \
                else self._build_pserver_programs(compiled_config)

        loss.block.program = main_program
        fluid.framework.switch_startup_program(startup_program)

        return None, None

    def _disable_strategy(self, dist_strategy):
141
        self.user_defined_strategy.a_sync_configs = {}