pool_test_maxPool2d.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#include <gtest/gtest.h>
#include "paddle/operators/math/pooling.h"

#include "paddle/memory/memcpy.h"
#include "paddle/platform/enforce.h"

#include <stdlib.h>
#include <time.h>

#ifndef PADDLE_ONLY_CPU

template <typename PooType>
void testPool2d(paddle::platform::DeviceContext& context, PooType pool_process,
                paddle::framework::Tensor& input,
                paddle::framework::Tensor& input_grad,
                paddle::framework::Tensor& output,
                paddle::framework::Tensor& output_grad, std::vector<int>& ksize,
                std::vector<int>& strides, std::vector<int>& paddings) {
  paddle::operators::math::Pool2dForwardFunctor<paddle::platform::GPUPlace,
                                                PooType, float>
      pool2d_forward;
  pool2d_forward(context, input, output, ksize, strides, paddings,
                 pool_process);

  int times = 50;
  clock_t start, finish;
  double totaltime;

  // Pool2dBackwardFunctor
  start = clock();
  for (int i = 0; i < times; ++i) {
    paddle::operators::math::Pool2dBackwardFunctor<paddle::platform::GPUPlace,
                                                   PooType, float>
        pool2d_backward;
    pool2d_backward(context, input, input_grad, output, output_grad, ksize,
                    strides, paddings, pool_process);
    PADDLE_ENFORCE(cudaStreamSynchronize(0),
                   "cudaStreamSynchronize failed in pool2d_backward CopyFrom");
  }
  finish = clock();
  totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
  totaltime /= times;
  std::cout << "\nPool3dBackwardFunctor: " << totaltime << "s" << std::endl;

  // MaxPool3dBackwardFunctor
  start = clock();
  for (int j = 0; j < times; ++j) {
    paddle::operators::math::MaxPool2dBackwardFunctor<
        paddle::platform::GPUPlace, float>
        maxpool2d_backward;
    maxpool2d_backward(context, input, input_grad, output, output_grad, ksize,
                       strides, paddings);
    PADDLE_ENFORCE(
        cudaStreamSynchronize(0),
        "cudaStreamSynchronize failed in maxpool2d_backward CopyFrom");
  }
  finish = clock();
  totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
  totaltime /= times;
  std::cout << "\nMaxPool3dBackwardFunctor: " << totaltime << "s" << std::endl;
}

void test2dPool() {
  using paddle::platform::DeviceContext;
  using paddle::platform::CUDADeviceContext;
  using paddle::platform::GPUPlace;

  paddle::framework::Tensor input_tmp;
  paddle::framework::Tensor output_tmp;
  paddle::framework::Tensor input;
  paddle::framework::Tensor input_grad;
  paddle::framework::Tensor output;
  paddle::framework::Tensor output_grad;

  int batch = 32;
  int channel = 32;
  int input_height = 128;
  int input_width = 128;
  int in_len = batch * channel * input_height * input_width;
  std::vector<int> ksize({3, 3});
  std::vector<int> strides({1, 1});
  std::vector<int> paddings({0, 0});

  int output_height =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int output_width =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int output_len = output_height * output_width;

  input_tmp.mutable_data<float>({batch, channel, input_height, input_width},
                                paddle::platform::CPUPlace());
  output_tmp.mutable_data<float>({batch, channel, output_height, output_width},
                                 paddle::platform::CPUPlace());

  float* arr = new float[in_len];
  auto* place = new paddle::platform::GPUPlace();

  float* input_ptr = input_tmp.data<float>();
  for (int i = 0; i < in_len; ++i) arr[i] = i;  // rand() / double(RAND_MAX/2);
  memcpy(input_ptr, arr, in_len * sizeof(float));
  input.CopyFrom<float>(input_tmp, *place);

  input_ptr = input_tmp.data<float>();
  for (int i = 0; i < in_len; ++i) arr[i] = 0;
  memcpy(input_ptr, arr, in_len * sizeof(float));
  input_grad.CopyFrom<float>(input_tmp, *place);

  // output
  input_ptr = output_tmp.data<float>();
  for (int i = 0; i < output_len; ++i)
    arr[i] = 0;  // rand() / double(RAND_MAX/2);
  memcpy(input_ptr, arr, output_len * sizeof(float));
  output.CopyFrom<float>(input_tmp, *place);

  // output
  input_ptr = output_tmp.data<float>();
  for (int i = 0; i < output_len; ++i)
    arr[i] = 1;  // rand() / double(RAND_MAX/2);
  memcpy(input_ptr, arr, output_len * sizeof(float));
  output_grad.CopyFrom<float>(input_tmp, *place);

  paddle::platform::DeviceContext* context =
      new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace());
  paddle::operators::math::pool::maxPool<float> pool_process;

  testPool2d<paddle::operators::math::pool::maxPool<float>>(
      *context, pool_process, input, input_grad, output, output_grad, ksize,
      strides, paddings);
}

int main() {
  //  testPool3d<paddle::platform::CPUPlace>();
  test2dPool();
  //  testPool3d<paddle::platform::GPUPlace>();
}
#endif