cub_reduce.h 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

23 24 25 26 27 28 29 30
#ifdef __NVCC__
#include "cub/cub.cuh"  // NOLINT
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif

31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace operators {

namespace detail {
template <typename T, size_t ElementCount>
struct Array {
 public:
  HOSTDEVICE inline Array() {}

  HOSTDEVICE inline T& operator[](size_t index) { return data_[index]; }

  HOSTDEVICE inline const T& operator[](size_t index) const {
    return data_[index];
  }

  HOSTDEVICE constexpr inline size_t size() const { return ElementCount; }

  template <typename VectorLikeType>
  static inline Array<T, ElementCount> From(const VectorLikeType& vec) {
53 54 55 56 57
    PADDLE_ENFORCE_EQ(vec.size(), ElementCount,
                      platform::errors::InvalidArgument(
                          "Cub reduce Array: size not match. Received "
                          "vec.size() %d !=  ElementCount %d.",
                          vec.size(), ElementCount));
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    size_t n = static_cast<size_t>(vec.size());
    Array<T, ElementCount> ret;
    for (size_t i = 0; i < n; ++i) ret[i] = vec[i];
    return ret;
  }

 private:
  T data_[ElementCount];
};

// reduce the last axis of 2d array
template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp,
          int BlockDim>
__global__ void ReduceKernel2D(const Tx* x, Ty* y, ReduceOp reducer,
                               TransformOp transformer, Ty init,
                               int reduce_num) {
74 75 76 77
#ifdef __HIPCC__
  __shared__
      typename hipcub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
#else
78
  __shared__ typename cub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
79
#endif
80 81 82 83
  int idx_x = blockIdx.x * reduce_num;
  int idx_y = threadIdx.x;
  Ty reduce_var = init;
  for (int idx_y = threadIdx.x; idx_y < reduce_num; idx_y += BlockDim)
84 85
    reduce_var =
        reducer(reduce_var, static_cast<Ty>(transformer(x[idx_x + idx_y])));
86
  __syncthreads();
87

88 89 90 91
#ifdef __HIPCC__
  reduce_var = hipcub::BlockReduce<Ty, BlockDim>(temp_storage)
                   .Reduce(reduce_var, reducer);
#else
92 93
  reduce_var =
      cub::BlockReduce<Ty, BlockDim>(temp_storage).Reduce(reduce_var, reducer);
94
#endif
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

  if (threadIdx.x == 0) {
    y[blockIdx.x] = reduce_var;
  }
}

template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp,
          int BlockDim, int Rank, int ReduceRank>
__global__ void ReduceKernel(const Tx* x, Ty* y, ReduceOp reducer,
                             TransformOp transformer, Ty init, int reduce_num,
                             Array<int, Rank> x_strides,
                             Array<int, ReduceRank> reduce_dim,
                             Array<int, ReduceRank> reduce_strides,
                             Array<int, Rank - ReduceRank> left_dim,
                             Array<int, Rank - ReduceRank> left_strides) {
110 111 112 113
#ifdef __HIPCC__
  __shared__
      typename hipcub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
#else
114
  __shared__ typename cub::BlockReduce<Ty, BlockDim>::TempStorage temp_storage;
115
#endif
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  Array<int, Rank> sub_index;
  int left_idx = blockIdx.x;
  for (int i = 0; i < Rank - ReduceRank; ++i) {
    sub_index[left_dim[i]] = left_idx / left_strides[i];
    left_idx %= left_strides[i];
  }

  int reduce_idx = threadIdx.x;
  for (int j = 0; j < ReduceRank; ++j) {
    sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j];
    reduce_idx %= reduce_strides[j];
  }

  int idx_x = 0;
  for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]);
  Ty reduce_var = static_cast<Ty>(transformer(x[idx_x]));

  for (int i = threadIdx.x + BlockDim; i < reduce_num; i += BlockDim) {
    int reduce_idx = i;
    for (int j = 0; j < ReduceRank; ++j) {
      sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j];
      reduce_idx %= reduce_strides[j];
    }

    int idx_x = 0;
    for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]);
142 143
    reduce_var = static_cast<Ty>(
        reducer(reduce_var, static_cast<Ty>(transformer(x[idx_x]))));
144
  }
145
  __syncthreads();
146

147 148 149 150
#ifdef __HIPCC__
  reduce_var = hipcub::BlockReduce<Ty, BlockDim>(temp_storage)
                   .Reduce(reduce_var, reducer);
#else
151 152
  reduce_var =
      cub::BlockReduce<Ty, BlockDim>(temp_storage).Reduce(reduce_var, reducer);
153
#endif
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

  if (threadIdx.x == 0) {
    y[blockIdx.x] = reduce_var;
  }
}

static inline std::vector<int> GetStrides(const std::vector<int>& dims) {
  int n = static_cast<int>(dims.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[i + 1];
  }
  return strides;
}

static inline std::vector<int> GetStrides(const std::vector<int>& dims,
                                          const std::vector<int>& idx) {
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

constexpr int kMaxBlockDim = 512;

static inline int GetDesiredBlockDim(int block_dim) {
  return block_dim >= kMaxBlockDim
             ? kMaxBlockDim
             : (1 << static_cast<int>(std::log2(block_dim)));
}

191 192
static inline void CheckReduceRankIsValid(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
193 194 195 196 197
    PADDLE_ENFORCE_EQ(reduce_rank, rank / 2,
                      platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank, rank / 2, reduce_rank));
198 199 200
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
201 202 203 204 205 206
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank, true,
        platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank, lower_rank, upper_rank, reduce_rank));
207 208 209
  }
}

210 211 212 213 214 215 216 217
template <typename Tx, typename Ty, int BlockDim, typename ReduceOp,
          typename TransformOp>
static void TensorReduceImpl(
    const Tx* x_data, Ty* y_data, const platform::Place& place,
    const ReduceOp& reducer, const TransformOp& transformer, const Ty& init,
    int left_num, int reduce_num, const std::vector<int>& x_strides,
    const std::vector<int>& reduce_dim, const std::vector<int>& reduce_strides,
    const std::vector<int>& left_dim, const std::vector<int>& left_strides,
218
    gpuStream_t stream) {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#define CUB_RANK_CASE(i, ...)             \
  case i: {                               \
    constexpr auto kRank = i;             \
    switch (reduce_rank) { __VA_ARGS__; } \
  } break

#define CUB_REDUCE_RANK_CASE(i, ...)                              \
  case i: {                                                       \
    constexpr auto kReduceRank = i;                               \
    ReduceKernel<Tx, Ty, ReduceOp, TransformOp, BlockDim, kRank,  \
                 kReduceRank><<<left_num, BlockDim, 0, stream>>>( \
        x_data, y_data, reducer, transformer, init, reduce_num,   \
        Array<int, kRank>::From(x_strides),                       \
        Array<int, kReduceRank>::From(reduce_dim),                \
        Array<int, kReduceRank>::From(reduce_strides),            \
        Array<int, kRank - kReduceRank>::From(left_dim),          \
        Array<int, kRank - kReduceRank>::From(left_strides));     \
  } break

  int rank = x_strides.size();
  int reduce_rank = reduce_strides.size();
  if (rank == reduce_rank) {
241 242 243 244
#ifdef __HIPCC__
    hipcub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, transformer);
#else
245 246
    cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, transformer);
247
#endif
248
    size_t temp_storage_bytes = 0;
249 250 251 252
#ifdef __HIPCC__
    hipcub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
                                 reduce_num, reducer, init, stream);
#else
253 254
    cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
                              reduce_num, reducer, init, stream);
255
#endif
256 257 258 259
    framework::Tensor tmp;
    auto* temp_storage = tmp.mutable_data<uint8_t>(
        framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
        place);
260 261 262 263
#ifdef __HIPCC__
    hipcub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x,
                                 y_data, reduce_num, reducer, init, stream);
#else
264 265
    cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data,
                              reduce_num, reducer, init, stream);
266
#endif
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    return;
  }
  if (rank == 2 && reduce_rank == 1 && reduce_dim[0] == 1) {
    ReduceKernel2D<Tx, Ty, ReduceOp, TransformOp,
                   BlockDim><<<left_num, BlockDim, 0, stream>>>(
        x_data, y_data, reducer, transformer, init, reduce_num);
    return;
  }
  /*
  if (rank == 3 && reduce_rank == 1 && reduce_dim[0] == 1) {
    // TODO(liangdun): we can optimize 3d case which the 2nd axis is reduced.
    // Currently, it is handled by code below, but inefficient
    return;
  }
  */

283 284 285 286 287 288 289 290 291 292 293 294 295 296
  /**
   * Since we have combined the adjacent reduce dimensions inside TensorReduce,
   * The reduce ranks and non-reduce ranks must be interleaving. That is to say,
   * the rank of Tensor must be `1010...` or `0101...` where 1 represents that
   * the dimension is about to be reduced.
   *
   * Therefore,
   * If rank is odd, only need to switch-case (rank - 1)/2 and (rank + 1)/2.
   * If rank is even, only need to switch-case rank/2.
   *
   * The total switch-case numbers reduce from 1+2+3+...+8=36 to (1+2)*4=12,
   * it would speed up compiling and make the binary size lower.
   */
  CheckReduceRankIsValid(reduce_rank, rank);
297 298 299 300 301
  switch (rank) {
    CUB_RANK_CASE(2, CUB_REDUCE_RANK_CASE(1););

    CUB_RANK_CASE(3, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2););

302
    CUB_RANK_CASE(4, CUB_REDUCE_RANK_CASE(2););
303

304
    CUB_RANK_CASE(5, CUB_REDUCE_RANK_CASE(2); CUB_REDUCE_RANK_CASE(3););
305

306
    CUB_RANK_CASE(6, CUB_REDUCE_RANK_CASE(3););
307

308
    CUB_RANK_CASE(7, CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4););
309

310
    CUB_RANK_CASE(8, CUB_REDUCE_RANK_CASE(4););
311

312
    CUB_RANK_CASE(9, CUB_REDUCE_RANK_CASE(4); CUB_REDUCE_RANK_CASE(5););
313 314 315 316 317 318 319 320 321 322 323 324
  }

#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}

}  // namespace detail

template <typename Tx, typename Ty, typename ReduceOp, typename TransformOp>
void TensorReduce(const framework::Tensor& x, framework::Tensor* y,
                  std::vector<int> origin_reduce_dims, const Ty& init,
                  const ReduceOp& reducer, const TransformOp& transformer,
325
                  gpuStream_t stream) {
326
  auto x_dim = framework::vectorize<int>(x.dims());
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  std::vector<int> new_x_dim, new_reduce_dims;
  int is_reduced = 0;
  for (auto e : origin_reduce_dims) {
    auto pos = e >= 0 ? e : e + x_dim.size();
    is_reduced |= 1 << e;
  }
  for (int i = 0; i < x_dim.size(); i++) {
    if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
      new_x_dim.push_back(x_dim[i]);
      if ((is_reduced >> i) & 1)
        new_reduce_dims.push_back(new_x_dim.size() - 1);
    } else {
      new_x_dim[new_x_dim.size() - 1] *= x_dim[i];
    }
  }
  x_dim = new_x_dim;
  origin_reduce_dims = new_reduce_dims;
  int x_rank = static_cast<int>(x_dim.size());
  std::set<int> left_set, reduce_set;
  for (int i = 0; i < x_rank; ++i) left_set.insert(i);

  for (auto e : origin_reduce_dims) {
    left_set.erase(e);
    reduce_set.insert(e);
  }

  std::vector<int> reduce_dim(reduce_set.begin(), reduce_set.end());
  std::vector<int> left_dim(left_set.begin(), left_set.end());

  std::vector<int> x_strides = detail::GetStrides(x_dim);
  std::vector<int> reduce_strides = detail::GetStrides(x_dim, reduce_dim);
  std::vector<int> left_strides = detail::GetStrides(x_dim, left_dim);
  int reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];
  int left_num = 1;
  if (left_dim.size()) left_num = left_strides[0] * x_dim[left_dim[0]];

  std::vector<int> y_dim(left_dim.size());
  for (int i = 0; i < left_dim.size(); ++i) {
    y_dim[i] = x_dim[left_dim[i]];
  }
  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>(x.place());
369 370 371 372 373 374
  if (reduce_num == 1) {
    auto out_dims = y->dims();
    framework::TensorCopy(x, y->place(), y);
    y->Resize(out_dims);
    return;
  }
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

#define CUB_BLOCK_DIM_CASE(block_dim)                                    \
  case block_dim: {                                                      \
    constexpr auto kBlockDim = block_dim;                                \
    detail::TensorReduceImpl<Tx, Ty, block_dim, ReduceOp, TransformOp>(  \
        x_data, y_data, x.place(), reducer, transformer, init, left_num, \
        reduce_num, x_strides, reduce_dim, reduce_strides, left_dim,     \
        left_strides, stream);                                           \
  } break

  switch (detail::GetDesiredBlockDim(reduce_num)) {
    CUB_BLOCK_DIM_CASE(512);
    CUB_BLOCK_DIM_CASE(256);
    CUB_BLOCK_DIM_CASE(128);
    CUB_BLOCK_DIM_CASE(64);
    CUB_BLOCK_DIM_CASE(32);
    CUB_BLOCK_DIM_CASE(16);
    CUB_BLOCK_DIM_CASE(8);
    CUB_BLOCK_DIM_CASE(4);
    CUB_BLOCK_DIM_CASE(2);
  }
#undef CUB_BLOCK_DIM_CASE
}

399 400 401 402 403 404 405 406
template <typename Tx, typename ReduceOp, typename TransformOp>
struct TensorReduceFunctor {
  const framework::Tensor& x;
  framework::Tensor* y;
  std::vector<int> origin_reduce_dims;
  const double& init;
  const ReduceOp& reducer;
  const TransformOp& transformer;
407
  gpuStream_t stream;
408 409 410
  TensorReduceFunctor(const framework::Tensor& x, framework::Tensor* y,
                      std::vector<int> origin_reduce_dims, const double& init,
                      const ReduceOp& reducer, const TransformOp& transformer,
411
                      gpuStream_t stream)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
      : x(x),
        y(y),
        origin_reduce_dims(origin_reduce_dims),
        init(init),
        reducer(reducer),
        transformer(transformer),
        stream(stream) {}

  template <typename Ty>

  void apply() const {
    const Ty& init_cast = static_cast<Ty>(init);
    TensorReduce<Tx, Ty, ReduceOp, TransformOp>(
        x, y, origin_reduce_dims, init_cast, reducer, transformer, stream);
  }
};

429 430
}  // namespace operators
}  // namespace paddle