partitioner.py 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import core, unique_name
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
23 24 25 26
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
from paddle.distributed.auto_parallel.dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute
from .process_group import new_process_group
27
from .utils import set_dist_op_desc_original_id
28
from .utils import print_program_with_dist_attr, is_forward_op, is_backward_op
J
JZ-LIANG 已提交
29
from .operators.common import BACKWARD_ONLY_DIST_OPS
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
    Given a serial program which has been auto completed with shard annotation, the Partitioner 
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

48
    def __init__(self, dist_context, rank_id=0):
49 50
        """
        Args:
51
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
52 53
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
54
        if not isinstance(dist_context, DistributedContext):
55
            raise TypeError(
56 57
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
58

59
        self._dist_context = dist_context
60 61 62 63
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

64 65 66
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
67
            raise TypeError(
68 69
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
70 71

        # check if shard annotated serial program valid
72
        if not self._is_valid_annotated_program(serial_main_program):
73 74 75
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

76 77 78 79
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.set_varname_mapping(self._serial2dist_varname_mapping)
        dist_op_context.set_rank_id(self._rank_id)
80

81 82 83 84 85 86 87
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
        dist_op_context.set_dst_startup_program(partitioned_startup_prog)
88

89
        # partition main program
90 91
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
92

93
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
94

95 96
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
97

98 99 100 101
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
102

103 104 105
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
106
        var2shape = {}
107
        temp_varname_map = {}
108

109 110
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
111 112 113 114 115 116
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
117 118 119 120 121 122 123 124 125 126

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
127
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
128 129 130 131 132 133
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
134
                                  var2shape[temp_varname_map[output_vars[0]]])
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
155 156 157 158 159
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

160
        dist_op_context = self._dist_context.dist_op_context
161
        partitioned_main_prog = fluid.Program()
162 163 164
        dist_op_context.set_dst_main_program(partitioned_main_prog)
        target_block = partitioned_main_prog.global_block()
        ref_block = serial_main_program.global_block()
165 166
        serial_ops = serial_main_program.global_block().ops

167 168 169 170 171 172 173
        # init mapping
        first_backward_op_idx = -1
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
            if is_forward_op(serial_ops[idx]):
                forward_op_id2forward_op[serial_ops[idx].desc.id(
                )] = serial_ops[idx]
174

175
        # partiiton
176 177 178 179 180 181
        for op in serial_ops:

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
182 183 184 185
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
186 187 188 189 190 191 192 193 194 195
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
196
                    _partition_var(self._dist_context, ref_block, target_block,
197 198 199 200 201
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
202 203
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
            if is_forward_op(op) or op_dist_attr.is_recompute:
204 205 206 207 208 209 210 211 212 213 214 215
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_backward_impl.backward(self._dist_context, **kinputs,
                                               **koutputs)
216
            else:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                raise NotImplementedError(
                    "partitioner only support forward op and backward op, but got {}".
                    format(str(op)))

        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p_name = self._serial2dist_varname_mapping[p.name]
            assert target_block.has_var(dist_p_name)
            dist_p = target_block.var(dist_p_name)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
                dist_g_name = self._serial2dist_varname_mapping[g.name]
                assert target_block.has_var(dist_g_name)
                dist_g = target_block.var(dist_g_name)
            partitioned_params_and_grads.append((dist_p, dist_g))
235

236
        return partitioned_main_prog, partitioned_params_and_grads
237 238 239 240 241 242 243

    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
244
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
245 246
        ]
        var_dist_attrs = [
247 248
            self._dist_context.get_tensor_dist_attr_for_program(var)
            for var in vars_
249 250 251 252 253 254 255 256 257 258 259 260 261
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated


def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
262 263
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


281
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
282 283
                         dst_shape):
    # NOTE hack to copied Parameter
284
    # not initialized parameter, need to initialize it
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

    param = Parameter(
        block=dst_block,
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer,
        **copied_kwargs)

    # set dist attr uid
    # distributed_attr_uid = src_var.desc.get_distributed_attr_uid()
    # param.desc.set_distributed_attr_uid(distributed_attr_uid)
    dist_attr = copy.deepcopy(
309
        dist_context.get_tensor_dist_attr_for_program(src_var))
310
    assert dist_attr is not None
311
    dist_context.set_tensor_dist_attr_for_program(param, dist_attr)
312 313


314 315
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    var = dst_block.create_var(
        type=src_var.type,
        name=dst_varname,
        shape=dst_shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        persistable=src_var.persistable,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer)

    # set dist attr uid
    # distributed_attr_uid = src_var.desc.get_distributed_attr_uid()
    # var.desc.set_distributed_attr_uid(distributed_attr_uid)
    dist_attr = copy.deepcopy(
332
        dist_context.get_tensor_dist_attr_for_program(src_var))
333
    assert dist_attr is not None
334
    dist_context.set_tensor_dist_attr_for_program(var, dist_attr)
335 336


337
def _partition_var(dist_context, src_block, dst_block, src_varname,
338 339 340 341 342 343 344 345 346 347 348 349
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

    if src_var.type == core.VarDesc.VarType.READER:
        dst_block.create_var(
            type=src_var.type,
            name=dst_varname,
            persistable=True,
            stop_gradient=True)
J
JZ-LIANG 已提交
350
        target_shape = None
351
    else:
352
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
353 354 355
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
356 357
            _partition_parameter(dist_context, src_var, dst_block, dst_varname,
                                 target_shape)
358
        else:
359 360
            _partition_intermediate_var(dist_context, src_var, dst_block,
                                        dst_varname, target_shape)
J
JZ-LIANG 已提交
361
    return target_shape
362 363


364 365 366
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
367 368 369
    if backward_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[backward_op.desc.id(
        )]
370 371 372
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
373 374 375 376 377
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
378

379
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
380 381
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
382 383 384 385
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
            backward_op.type).get_impl(op_dist_attr.impl_idx)
        return dist_op_impl
J
JZ-LIANG 已提交
386 387 388

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
389 390 391 392


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
393 394 395 396
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl