graph_pattern_detector.cc 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <array>
17 18 19 20
#include <string>
#include <vector>

#include "paddle/fluid/framework/ir/graph_helper.h"
21
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
22
#include "paddle/fluid/framework/ir/graph_traits.h"
23
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/string/pretty_log.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/string/printf.h"
28 29 30 31
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
32 33 34 35
using string::PrettyLogEndl;
using string::PrettyLog;
using string::Style;

36 37
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
38
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
46
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
47 48 49 50
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
51
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
52 53 54 55 56 57
  if (!name.empty()) {
    PADDLE_ENFORCE_EQ(node_map_.count(name), 0,
                      "PDNode's name should be unique, get duplicate [%s]",
                      name);
  }

58
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
59
  auto *cur = nodes_.back().get();
60
  node_map_[name] = cur;
61 62 63
  return cur;
}

C
chengduo 已提交
64
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
65 66 67 68 69 70 71 72
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
73
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
74 75 76 77 78 79
  PADDLE_ENFORCE(a);
  PADDLE_ENFORCE(b);
  PADDLE_ENFORCE(a != b, "can't connect to the same nodes.");
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
80
void GraphPatternDetector::operator()(Graph *graph,
81
                                      GraphPatternDetector::handle_t handler) {
82 83 84 85
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

86 87 88
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
89
  ValidateByNodeRole(&subgraphs);
90

Y
Yan Chunwei 已提交
91
  if (subgraphs.empty()) return;
Y
Yan Chunwei 已提交
92
  PrettyLogEndl(Style::detail(), "---  detect %d subgraphs", subgraphs.size());
93
  int id = 0;
C
chengduo 已提交
94
  for (auto &g : subgraphs) {
95
    VLOG(30) << "optimizing #" << id++ << " subgraph";
96 97 98 99
    handler(g, graph);
  }
}

C
chengduo 已提交
100
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
101
  VLOG(30) << "mark pdnodes in graph";
102 103
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
104 105
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
106
      if (pdnode->Tell(&node)) {
107
        VLOG(40) << "pdnode " << pdnode->name() << " marked";
108 109 110 111
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
112
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
113
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
114
    if (!pdnodes2nodes_.count(pdnode.get())) {
115
      VLOG(40) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
116
      // return false;
Y
Yan Chunwei 已提交
117 118
    }
  }
C
chengduo 已提交
119 120 121
  for (auto &item : pdnodes2nodes_) {
    for (auto &n : item.second) {
      GetMarkedNodes(const_cast<Graph *>(&graph)).insert(n);
Y
Yan Chunwei 已提交
122 123
    }
  }
124
  VLOG(30) << pdnodes2nodes_.size() << " nodes marked";
125

126 127 128
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
129 130 131
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be droped.
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
132
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
133 134 135 136 137
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
138
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
139
            // Collect the inputs and outputs.
C
chengduo 已提交
140 141
            std::unordered_set<Node *> ios;
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
142 143 144 145
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
146
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
147
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
148
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
149 150 151 152
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
153
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

165
struct HitGroup {
C
chengduo 已提交
166
  std::unordered_map<PDNode *, Node *> roles;
167

C
chengduo 已提交
168
  bool Match(Node *node, PDNode *pat) {
169 170 171 172
    if (nodes_.count(node)) {
      if (!roles.count(pat)) return false;
      return roles[pat] == node;
    }
173 174 175
    return !roles.count(pat) || roles.at(pat) == node;
  }

C
chengduo 已提交
176
  void Register(Node *node, PDNode *pat) {
177 178 179 180 181
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
C
chengduo 已提交
182
  std::unordered_set<Node *> nodes_;
183 184 185
};

// Tell whether Node a links to b.
C
chengduo 已提交
186 187
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
188 189 190 191 192 193 194
    if (b == node) {
      return true;
    }
  }
  return false;
}

195 196
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
197
  // Init empty subgraphs.
198
  std::vector<GraphPatternDetector::subgraph_t> result;
199
  std::vector<HitGroup> init_groups;
200 201
  std::array<std::vector<HitGroup>, 2> bi_records;
  // PADDLE_ENFORCE(!pattern_.edges().empty(), "At least one edge is needed");
C
chengduo 已提交
202
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
203
                                               : pattern_.edges().front().first;
204
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
205
  for (auto *node : pdnodes2nodes_[first_pnode]) {
206 207 208 209 210 211 212 213 214 215
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
216
  for (const auto &edge : pattern_.edges()) {
217
    VLOG(40) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
218
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
219 220
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
221 222
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
223
    cur_groups.clear();
224
    if (pre_groups.empty()) break;
225
    // source -> target
C
chengduo 已提交
226 227
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
228
        VLOG(80) << "check " << source->id() << " -- " << target->id();
229
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
230
        for (const auto &group : pre_groups) {
231 232 233 234 235 236 237 238 239 240 241 242 243
          HitGroup new_group = group;
          if (IsNodesLink(source, target) &&
              new_group.Match(source, edge.first)) {
            new_group.Register(source, edge.first);
            if (new_group.Match(target, edge.second)) {
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
244
    VLOG(30) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
245 246
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
247 248
        VLOG(40) << "node " << item.second->id() << " as "
                 << item.first->name();
Y
Yan Chunwei 已提交
249
      }
250
      VLOG(40) << "=========================================================";
Y
Yan Chunwei 已提交
251
    }
252 253
  }

C
chengduo 已提交
254
  for (auto &group : bi_records[step % 2]) {
255
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
256
    for (auto &role : group.roles) {
257 258 259 260 261 262 263
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
264 265
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
266
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
267 268 269 270 271
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
272
  }
Y
Yan Chunwei 已提交
273
};
Y
Yan Chunwei 已提交
274

275 276
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
277
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
278
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
279
  if (subgraphs->empty()) return;
280
  std::vector<GraphPatternDetector::subgraph_t> result;
281 282

  std::unordered_set<size_t> set;
Y
Yan Chunwei 已提交
283
  std::hash<std::string> hasher;
C
chengduo 已提交
284
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
285 286
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
287
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
288 289 290
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
291
    }
Y
Yan Chunwei 已提交
292
    auto key = hasher(ss.str());
293 294 295 296 297 298 299 300
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

301
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
302
    std::vector<subgraph_t> *subgraphs) {
303
  std::vector<subgraph_t> result;
C
chengduo 已提交
304
  std::unordered_set<Node *> node_set;
305

C
chengduo 已提交
306
  for (const auto &subgraph : *subgraphs) {
307
    bool valid = true;
C
chengduo 已提交
308
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
309
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
310 311 312 313 314
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
315
      for (auto &item : subgraph) {
316 317 318 319 320 321 322 323
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

324 325 326 327 328
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
329 330
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
331 332 333 334 335
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
336
  for (const auto &edge : edges()) {
337 338 339 340
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
341 342
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
343 344 345 346 347
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
348
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
349
  // extend outlinks.
C
chengduo 已提交
350
  for (PDNode *x : others) {
351 352 353 354 355
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
356
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
357
  // extend outlinks.
C
chengduo 已提交
358
  for (PDNode *x : others) {
359 360 361 362 363
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
364 365
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
366 367
  return this;
}
C
chengduo 已提交
368 369 370

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
371 372 373 374
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
375 376 377 378 379 380 381 382

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
383 384
  return this;
}
C
chengduo 已提交
385 386

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
387
  assert_is_var();
C
chengduo 已提交
388
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
389 390
  return this;
}
C
chengduo 已提交
391 392

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
393
  assert_is_var();
C
chengduo 已提交
394
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
395 396
  return this;
}
C
chengduo 已提交
397 398 399

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
400 401
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
402 403
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
404 405 406
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
407 408 409 410 411
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
412 413 414

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
415
  assert_is_var();
C
chengduo 已提交
416 417
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
418 419 420
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
421 422 423 424 425
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
426 427

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
428
  assert_is_var();
C
chengduo 已提交
429 430
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
431 432 433 434 435 436 437 438 439
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
440 441

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
442
  assert_is_var();
C
chengduo 已提交
443 444
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
445 446 447 448 449 450 451 452 453
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
454 455

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
456
  assert_is_var();
C
chengduo 已提交
457 458
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
459 460 461 462 463 464 465 466
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
467 468 469

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
470 471 472 473
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
474
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
475
  assert_is_var();
C
chengduo 已提交
476 477
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
478 479 480 481 482 483 484 485
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
486 487 488

PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
489 490 491 492
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
493 494

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
495
  assert_is_op(op_type);
C
chengduo 已提交
496
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
497 498
  return this;
}
C
chengduo 已提交
499 500

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
501
  assert_is_op(op_type);
C
chengduo 已提交
502
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
503 504
  return this;
}
C
chengduo 已提交
505 506

PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
507 508 509 510
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
594 595 596 597 598 599
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
600 601

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
602 603 604 605 606
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Input(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
607 608

bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
609 610 611 612 613
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->Op()->Output(argument).size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
614 615 616 617 618

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
619 620
  }

C
chengduo 已提交
621
  for (auto *node : graph->Nodes()) {
622 623
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
624
        it = const_cast<Node *>(node)->inputs.erase(it);
625
      } else {
626
        it++;
627
      }
628 629 630
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
631
        it = const_cast<Node *>(node)->outputs.erase(it);
632
      } else {
633
        it++;
634
      }
635 636 637
    }
  }
}
C
chengduo 已提交
638 639 640

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
641 642 643 644 645 646 647
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
                                     bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
                           ->assert_is_op_input("batch_norm", "Scale");
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Bias");
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
                          ->assert_is_op_input("batch_norm", "Mean");
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("batch_norm", "Variance");

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("batch_norm");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("batch_norm", "MeanOut");

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "VarianceOut");

  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedMean");

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("batch_norm", "SavedVariance");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

C
chengduo 已提交
754 755
PDNode *patterns::ConvReLU::operator()(
    paddle::framework::ir::PDNode *conv_input) {
756 757
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
C
chengduo 已提交
758 759
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
760 761
  // Create variables
  // Filter
C
chengduo 已提交
762
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
763 764 765 766
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
C
chengduo 已提交
767
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
768 769 770 771
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("relu");
  // output
C
chengduo 已提交
772
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
773 774 775
                           ->AsOutput()
                           ->assert_is_op_output("relu");

776
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
777 778 779 780
  relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

T
tensor-tang 已提交
781 782 783 784
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
785 786 787 788
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
826
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
Y
Yan Chunwei 已提交
827 828 829
                                 bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
830
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
831

C
chengduo 已提交
832
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
833 834 835 836
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
837
  auto *mul_out_var =
Y
Yan Chunwei 已提交
838 839 840 841 842 843 844 845 846 847
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

  if (!with_bias) {  // not with bias
    // Add links.
    mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
    return mul_out_var;

  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
848
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
849 850
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
851
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
852 853 854
                     ->assert_is_op_input("elementwise_add")
                     ->AsInput();

C
chengduo 已提交
855
    auto *fc_out = pattern->NewNode(Out_repr())
Y
Yan Chunwei 已提交
856 857 858 859 860 861
                       ->AsOutput()
                       ->assert_is_op_output("elementwise_add");

    mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var});
    elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out});
    return fc_out;
862 863
  }
}
T
tensor-tang 已提交
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
883
PDNode *patterns::LSTM::operator()(PDNode *x) {
884
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
885
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
886
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
887
  auto *arg__ =               \
Y
Yan Chunwei 已提交
888
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
889 890 891 892 893

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
894 895
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
896

Y
Yan Chunwei 已提交
897 898 899 900 901
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
902 903 904 905 906

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
907

C
chengduo 已提交
908
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
909
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
910
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
911
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
912
  auto *arg__ =               \
Y
Yan Chunwei 已提交
913
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
914

Y
Yan Chunwei 已提交
915
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
916 917
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
918
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
919 920
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
921
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
922
  // below are intermediate
Y
Yan Chunwei 已提交
923 924 925 926
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
927

T
tensor-tang 已提交
928 929 930 931
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
932 933 934 935 936
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

M
Michal Gallus 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
PDNode *patterns::ConvBias::operator()(
    paddle::framework::ir::PDNode *conv_input) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d")
                           ->assert_is_op_input("elementwise_add");
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1052
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1064 1065 1066 1067
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1068
                       ->AsInput()
1069 1070 1071
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1072
                        ->AsInput()
1073 1074 1075
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1076
                        ->AsOutput()
1077 1078
                        ->assert_is_op_output("conv2d", "Output");

1079
  conv_op->LinksFrom({input_var, filter_var});
1080 1081 1082 1083 1084
  conv_op->LinksTo({output_var});

  return output_var;
}

1085
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var) {
1086 1087 1088
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1089
  x_var->assert_is_op_input("elementwise_add", "X");
1090

1091 1092 1093
  auto y_var = pattern->NewNode(elementwise_add_x_repr())
                   ->AsInput()
                   ->assert_is_op_input("elementwise_add", "Y");
1094 1095 1096 1097 1098

  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1099
  elementwise_add_op->LinksFrom({x_var, y_var});
1100 1101 1102 1103
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1104 1105 1106
}  // namespace ir
}  // namespace framework
}  // namespace paddle