analyzer_vis_tester.cc 4.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
T
tensor-tang 已提交
17
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {
namespace inference {
namespace analysis {
22
using contrib::AnalysisConfig;
T
tensor-tang 已提交
23 24 25 26 27 28 29

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line) {
M
minqiyang 已提交
30
  VLOG(3) << "process a line";
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto &d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto &s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
M
minqiyang 已提交
48 49
  VLOG(3) << "data size " << record.data.size();
  VLOG(3) << "data shape size " << record.shape.size();
T
tensor-tang 已提交
50 51 52
  return record;
}

T
Tao Luo 已提交
53
void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
54 55 56 57 58 59
  cfg->param_file = FLAGS_infer_model + "/__params__";
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
T
tensor-tang 已提交
60
  // TODO(TJ): fix fusion gru
61
  cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
T
Tao Luo 已提交
62
}
T
tensor-tang 已提交
63

T
Tao Luo 已提交
64 65
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
T
tensor-tang 已提交
66 67 68 69 70 71 72 73
  std::string line;
  std::ifstream file(FLAGS_infer_data);
  std::getline(file, line);
  auto record = ProcessALine(line);

  PaddleTensor input;
  input.shape = record.shape;
  input.dtype = PaddleDType::FLOAT32;
T
Tao Luo 已提交
74 75 76 77 78 79 80
  size_t input_size = record.data.size() * sizeof(float);
  input.data.Resize(input_size);
  memcpy(input.data.data(), record.data.data(), input_size);
  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}
T
tensor-tang 已提交
81

T
Tao Luo 已提交
82 83
// Easy for profiling independently.
//  ocr, mobilenet and se_resnext50
T
Tao Luo 已提交
84
void profile(bool use_mkldnn = false) {
T
Tao Luo 已提交
85 86
  AnalysisConfig cfg;
  SetConfig(&cfg);
87 88 89
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
90 91 92 93
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
94 95
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    std::string line;
    std::ifstream file(FLAGS_refer_result);
    std::getline(file, line);
    auto refer = ProcessALine(line);
    file.close();

    auto &output = outputs.front();
    size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
    CHECK_EQ(numel, refer.data.size());
    for (size_t i = 0; i < numel; ++i) {
      CHECK_LT(
          fabs(static_cast<float *>(output.data.data())[i] - refer.data[i]),
          1e-5);
    }
  }
T
tensor-tang 已提交
112 113
}

T
Tao Luo 已提交
114 115 116 117 118 119
TEST(Analyzer_vis, profile) { profile(); }

#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
120 121 122 123 124
// Check the fuse status
TEST(Analyzer_vis, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
125 126
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  GetFuseStatis(predictor.get(), &num_ops);
T
Tao Luo 已提交
127 128 129
}

// Compare result of NativeConfig and AnalysisConfig
T
Tao Luo 已提交
130
void compare(bool use_mkldnn = false) {
T
Tao Luo 已提交
131 132
  AnalysisConfig cfg;
  SetConfig(&cfg);
133 134 135
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
  }
T
Tao Luo 已提交
136 137 138

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
139 140
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
Tao Luo 已提交
141 142
}

T
Tao Luo 已提交
143
TEST(Analyzer_vis, compare) { compare(); }
T
Tao Luo 已提交
144
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
145
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
T
Tao Luo 已提交
146
#endif
T
tensor-tang 已提交
147

L
luotao1 已提交
148 149 150 151 152 153 154 155 156 157 158
// Compare Deterministic result
TEST(Analyzer_vis, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
tensor-tang 已提交
159 160 161
}  // namespace analysis
}  // namespace inference
}  // namespace paddle