distribute_transpiler.py 61.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200 201 202 203 204 205 206 207
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
208
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
209 210 211
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
212
        self._init_splited_vars()
213

Y
Yancey1989 已提交
214 215
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
216
        send_vars = []
217 218 219 220 221 222

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
223
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
224

G
gongweibao 已提交
225
        if not self.config.slice_var_up:
226
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
227
            random.shuffle(grad_var_mapping_items)
228 229

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
230
            eplist = ps_dispatcher.dispatch(splited_vars)
231

G
gongweibao 已提交
232
            if not self.config.slice_var_up:
233 234
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
235 236 237 238 239 240 241 242 243
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
244
                index += 1
Y
Yancey1989 已提交
245 246 247 248
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
249
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
250
                index=index + 1,
251
                type="send",
Y
update  
Yancey1989 已提交
252
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
253 254 255 256 257
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
258 259
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
260 261 262 263 264

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
265
                outputs={},
Y
Yancey1989 已提交
266 267
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
268 269
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
270
                })
Y
Yancey1989 已提交
271 272 273

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
274
        for _, var in enumerate(send_vars):
275
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
276
        ps_dispatcher.reset()
Y
Yancey1989 已提交
277 278
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
279
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
280 281
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
282

Y
Yancey1989 已提交
283
        # step4: Concat the parameters splits together after recv.
M
minqiyang 已提交
284
        for varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
285 286 287 288 289 290 291 292
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
293 294 295 296 297
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
298

Q
qiaolongfei 已提交
299 300 301 302 303 304 305 306 307
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
308

M
minqiyang 已提交
309
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
310 311
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
312
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
313
            program.global_block().append_op(
T
typhoonzero 已提交
314
                type="concat",
T
typhoonzero 已提交
315
                inputs={"X": splited_var},
T
typhoonzero 已提交
316
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
317
                attrs={"axis": 0})
T
typhoonzero 已提交
318

319
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
320 321
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
322
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
323

T
typhoonzero 已提交
324
    def get_trainer_program(self):
Y
yi.wu 已提交
325 326 327 328 329 330
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
331
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
332
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
333
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
334 335
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
336 337 338

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
339
        Get parameter server side program.
340

Y
yi.wu 已提交
341 342
        Args:
            endpoint (str): current parameter server endpoint.
343

Y
yi.wu 已提交
344 345
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
346
        """
Y
yi.wu 已提交
347 348 349 350 351
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
352 353
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
354
        pserver_program.random_seed = self.origin_program.random_seed
355
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
356 357 358 359 360 361 362 363
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
364 365 366 367 368
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
369 370 371 372 373 374 375 376 377
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
378
            if self.sync_mode and self.trainer_num > 1:
379
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
380 381 382 383 384 385 386 387 388
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
389

Q
qiaolongfei 已提交
390
        # step 3
391
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
392 393 394
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
395
        # step 3.2
T
typhoonzero 已提交
396 397 398 399
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
400 401
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
402
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
403
        # step 3.3
T
typhoonzero 已提交
404
        # Iterate through the ops, and if an op and the optimize ops
405
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
406
        # append it into the sub program.
T
typhoonzero 已提交
407 408 409

        global_ops = []

Y
wip  
yi.wu 已提交
410 411
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
412
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
413
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
414
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
415
            elif op not in lr_ops:
Q
Qiyang Min 已提交
416
                self._append_pserver_non_opt_ops(block, op)
417 418 419 420 421 422

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
423

Y
Yancey1989 已提交
424
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
425 426 427 428 429 430 431 432
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
433
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
434 435 436

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
437
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
438 439

            # clone ops
Y
Yancey1989 已提交
440 441
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
442
                # clone sub_block of op
Y
Yancey1989 已提交
443
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
444 445 446 447

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

448
        # append lr decay ops to the child block if exists
449
        lr_ops = self._get_lr_ops()
450 451
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
452
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
453 454
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
455
            optimize_blocks.append(lr_decay_block)
456
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
457
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
458
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
459 460
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
461

T
typhoonzero 已提交
462
        # append op to the current block
Q
qiaolongfei 已提交
463
        grad_to_block_id = []
Q
qiaolongfei 已提交
464
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
465
        for idx, opt_op in enumerate(opt_op_on_pserver):
466
            per_opt_block = pserver_program.create_block(pre_block_idx)
467
            optimize_blocks.append(per_opt_block)
468
            # append grad merging ops before clip and weight decay
469
            # cases may like:
T
typhoonzero 已提交
470
            # L2Decay op -> clip op -> optimize
471 472 473 474 475 476 477
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
478
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
479 480
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
481
                if ufind.is_connected(op, opt_op) and op not in global_ops:
482
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
483
                                           merged_var, lr_ops)
T
typhoonzero 已提交
484

W
Wu Yi 已提交
485 486
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
487
        # append global ops
488
        if global_ops:
Q
qiaolongfei 已提交
489 490
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
491
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
492
            for glb_op in global_ops:
X
Xi Chen 已提交
493
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
494
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
495

496
        # process distributed lookup_table
Q
qiaolongfei 已提交
497
        prefetch_var_name_to_block_id = []
498 499
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
500
            table_opt_block = self._create_table_optimize_block(
501
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
502
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
503
            prefetch_var_name_to_block_id = self._create_prefetch_block(
504
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
505 506
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
507 508 509 510

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
511
            assert len(prefetch_var_name_to_block_id) > 0
512
        else:
Q
qiaolongfei 已提交
513
            assert len(prefetch_var_name_to_block_id) == 0
514

515
        attrs = {
516
            "optimize_blocks": optimize_blocks,
517 518 519
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
520
            "grad_to_block_id": grad_to_block_id,
521 522 523 524
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
525
            attrs['checkpint_block_id'] = checkpoint_block_id
526

T
typhoonzero 已提交
527 528 529 530 531
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
532
            attrs=attrs)
533

W
Wu Yi 已提交
534
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
535 536
        return pserver_program

537 538 539 540
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
541 542 543 544
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
545 546 547 548 549

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
550 551
            startup_program (Program): if pass None, will use
                default_startup_program
552

Y
yi.wu 已提交
553 554
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
555 556
        """
        s_prog = Program()
557 558 559 560
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
561
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
562 563 564 565 566 567 568 569 570 571 572
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
573
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
574
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
575
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
576 577 578 579
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
580
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
581 582 583 584 585 586 587 588 589 590 591 592
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
593 594 595
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
596 597 598
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
599
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
600 601 602 603
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
604
                    attrs=op.all_attrs())
T
typhoonzero 已提交
605 606
        return s_prog

607 608
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
609 610 611 612 613 614 615 616 617
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
618
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
670
    def _init_splited_vars(self):
Y
yi.wu 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
694
        if self.config.slice_var_up:
Y
yi.wu 已提交
695 696
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
697 698 699
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
700
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
701 702
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
703 704 705
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
706 707 708 709
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
710 711 712 713 714 715 716 717 718
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
719
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
720 721 722 723 724 725 726
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
727
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
728 729 730 731 732 733 734 735 736
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

737
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
738 739
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
740
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
741 742 743 744 745 746 747 748 749
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
750 751 752 753 754 755 756 757 758

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

759
                    lookup_table_op_index = list(all_ops).index(op)
760 761 762
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
763
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
764
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
765 766 767 768 769 770
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
771
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
772 773 774 775
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
776 777

                    # insert split_ids_op
W
Wu Yi 已提交
778
                    program.global_block()._insert_op(
779
                        index=lookup_table_op_index,
780 781 782 783 784 785 786
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
787
                        outputs={"Out": prefetch_input_vars})
788 789

                    # insert prefetch_op
W
Wu Yi 已提交
790
                    program.global_block()._insert_op(
791
                        index=lookup_table_op_index + 1,
792
                        type="prefetch",
Q
qiaolongfei 已提交
793 794
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
795
                        attrs={
796
                            "epmap": pserver_endpoints,
797 798 799
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
800
                        })
801 802

                    # insert concat_op
W
Wu Yi 已提交
803
                    program.global_block()._insert_op(
804 805 806 807 808 809 810
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
811
                            'X': prefetch_output_vars
812
                        },
813 814 815 816 817
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
818
                        })
819 820

                    # delete lookup_table_op
821
                    delete_ops(program.global_block(), [op])
822 823 824
                    # break for loop
                    break

Y
Yancey1989 已提交
825
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
826
        # 2. add split_ids_op and send_op to send gradient to pservers
827 828
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
829
        table_grad_name = grad_var_name(self.table_name)
830 831 832 833
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
834
                program.global_block()._insert_op(
835 836 837 838 839
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
840
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
841
                program.global_block()._insert_op(
842
                    index=op_index + 2,
843
                    type="send",
844
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
845 846
                    outputs={},
                    attrs={
847
                        "sync_mode": True,
Y
Yancey1989 已提交
848 849 850
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
851 852 853 854 855 856
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
885 886

    def _create_table_optimize_block(self, pserver_index, pserver_program,
887
                                     pre_block_idx, grad_to_block_id):
888 889
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
890 891
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
892

T
tangwei12 已提交
893
        zero_dim = int(
T
tangwei12 已提交
894 895 896 897
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
898 899
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
900
            shape=table_shape,
Y
Yancey1989 已提交
901 902 903
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
904 905
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
906
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
907
            self.origin_program.global_block().vars[grad_var_name(
908
                self.table_name)])
909 910 911 912

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
913 914
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
915
        ][0]
Q
qiaolongfei 已提交
916
        table_opt_block = pserver_program.create_block(pre_block_idx)
917

918 919 920
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
921
            pserver_side_table_grad_list = [
922 923 924 925 926 927 928 929 930
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

931
            # append sum op for pserver_side_table_grad_list
932 933
            table_opt_block.append_op(
                type="sum",
934
                inputs={"X": pserver_side_table_grad_list},
935 936
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
937 938
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
939
            origin_grad_name = grad_var.name
940 941
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
942 943
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
944
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
945
            grad_var = pserver_program.global_block()._rename_var(
946
                origin_grad_name, splited_grad_name)
947 948 949 950 951 952 953 954 955

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
956
        # only support sgd now
957 958 959 960
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
961
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
962

963 964 965
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

966 967
        return table_opt_block

T
tangwei12 已提交
968 969 970 971 972 973
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
974
        pserver_program.global_block().create_var(
T
tangwei12 已提交
975
            name="kLookupTablePath",
T
tangwei12 已提交
976 977
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
978

T
tangwei12 已提交
979
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
980
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
981 982 983 984
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
985
            attrs={'file_path': "none"})
T
tangwei12 已提交
986 987 988

        return checkpoint_save_block.idx

T
typhoonzero 已提交
989 990 991 992 993
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
994
        Create vars for each split.
T
typhoonzero 已提交
995 996
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
997 998 999 1000
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1001
        Returns:
1002
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1003
                from original var name to each var split.
T
typhoonzero 已提交
1004
        """
1005 1006

        # varname->[(block_id, current_block_size)]
1007
        block_map = collections.OrderedDict()
1008

1009
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1010 1011
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1012
            if varname not in block_map:
T
typhoonzero 已提交
1013
                block_map[varname] = []
1014
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1015

M
minqiyang 已提交
1016
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1017
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1018
            if len(splited) == 1:
1019
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1020 1021
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1022
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1023 1024 1025 1026 1027
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1028
                continue
T
typhoonzero 已提交
1029 1030

            var_mapping[varname] = []
T
typhoonzero 已提交
1031 1032 1033 1034
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1035

T
typhoonzero 已提交
1036
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1037
                size = block[1]
M
minqiyang 已提交
1038
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1039 1040 1041
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1042
                new_var_name = ""
1043
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1044 1045 1046 1047 1048
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1049
                var = program.global_block().create_var(
T
typhoonzero 已提交
1050 1051
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1052
                    dtype=orig_var.dtype,
1053
                    type=orig_var.type,
T
typhoonzero 已提交
1054
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1055
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1056
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1057
        return var_mapping
T
done  
typhoonzero 已提交
1058

W
Wu Yi 已提交
1059
    def _create_splited_vars(self, source_var, block, tag):
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1070 1071 1072 1073 1074 1075
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1076
            persistable=persistable)
T
done  
typhoonzero 已提交
1077

Y
Yancey1989 已提交
1078
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1079 1080 1081 1082
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1083
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1093
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1103

T
typhoonzero 已提交
1104 1105 1106 1107
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1108
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1131 1132
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1133
        orig_var_name = ""
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1144
        else:
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1172
        else:
1173 1174 1175 1176 1177 1178
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1179
            for i in range(self.trainer_num):
1180 1181 1182 1183 1184 1185 1186
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1187 1188
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1189 1190 1191 1192 1193 1194 1195 1196
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1197

1198
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1199
                            grad_to_block_id, origin_program, merged_var):
1200
        program = optimize_block.program
T
typhoonzero 已提交
1201
        pserver_block = program.global_block()
1202
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1203

T
typhoonzero 已提交
1204 1205
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1215
        for key in opt_op.input_names:
T
typhoonzero 已提交
1216 1217
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1234
            elif key == "Param":
W
Wu Yi 已提交
1235
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1236 1237
                if not param_block:
                    return
T
typhoonzero 已提交
1238
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1239
                    name=param_block.name,
T
typhoonzero 已提交
1240
                    persistable=True,
T
typhoonzero 已提交
1241 1242 1243
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1244
            elif key == "LearningRate":
1245
                # learning rate variable has already be created by non-optimize op,
1246
                # don't create it once again.
1247
                lr_varname = opt_op.input(key)[0]
1248
                if lr_varname in pserver_block.vars:
1249 1250 1251 1252 1253 1254 1255 1256 1257
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1258

T
typhoonzero 已提交
1259
        for key in opt_op.input_names:
1260
            new_shape = None
W
Wu Yi 已提交
1261
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1262
                continue
1263
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1264 1265 1266 1267
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1268
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1269 1270 1271 1272 1273
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1274

1275
        # change output's ParamOut variable
1276 1277
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1278
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1279

1280
        optimize_block.append_op(
T
typhoonzero 已提交
1281 1282
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1283
            outputs=outputs,
G
gongweibao 已提交
1284
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1285

1286 1287
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1288
        for _, g in six.iteritems(var_dict):
1289 1290 1291 1292 1293 1294
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1295 1296 1297
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1298
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1299 1300 1301 1302
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1303
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1304 1305 1306

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1307
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1308 1309 1310 1311
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1312
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1313

Y
Yancey1989 已提交
1314
        return block.append_op(
G
gongweibao 已提交
1315
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1316 1317

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1318
        program = optimize_block.program
1319
        # Append the ops for parameters that do not need to be optimized/updated
1320 1321
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1322
        for key, varlist in six.iteritems(inputs):
1323 1324
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1325
            for var in varlist:
1326 1327 1328 1329 1330 1331
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1332
                elif var.name not in program.global_block().vars:
1333
                    program.global_block().create_var(
T
typhoonzero 已提交
1334 1335 1336 1337 1338
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1339 1340
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1341
        for key, varlist in six.iteritems(outputs):
1342 1343 1344
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1345 1346 1347 1348
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1349
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1350
                    program.global_block()._clone_variable(var)
1351

Y
Yancey1989 已提交
1352
        return optimize_block.append_op(
T
typhoonzero 已提交
1353
            type=opt_op.type,
T
typhoonzero 已提交
1354 1355
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1356
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1357

1358 1359 1360 1361
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1362 1363
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1364 1365 1366 1367 1368 1369
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1370 1371
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1372 1373 1374 1375 1376 1377
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1378
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1379 1380
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1381 1382 1383 1384 1385 1386 1387
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1388
        if op.input("Param")[0] in param_names:
1389 1390 1391
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1392
                param = op.input("Param")[0]
T
typhoonzero 已提交
1393
                if same_or_split_var(n, param) and n != param:
1394 1395 1396
                    return True
            return False

T
typhoonzero 已提交
1397
    def _get_input_map_from_op(self, varmap, op):
1398
        """Returns a dict from op input name to the vars in varmap."""
1399
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1411
        """Returns a dict from op output name to the vars in varmap."""
1412
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1422 1423 1424 1425 1426 1427

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1428
            if self._is_optimizer_op(op):
1429 1430 1431 1432
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1433
        block = self.origin_program.global_block()
1434 1435 1436 1437 1438
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1439

1440 1441 1442 1443 1444
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1445
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1446 1447 1448 1449 1450 1451
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1452 1453
                    # we only need to append op for once
                    break
1454
        return lr_ops
Y
Yancey1989 已提交
1455

W
Wu Yi 已提交
1456 1457 1458 1459 1460
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1461 1462
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1463 1464 1465
            return True
        return False

Y
Yancey1989 已提交
1466
    def _get_optimize_pass(self):
1467
        """
1468
        Get optimizer operators, parameters and gradients from origin_program
1469 1470 1471 1472
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1473 1474 1475
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1476
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1477
        for op in block.ops:
W
Wu Yi 已提交
1478
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1479
                opt_ops.append(op)
1480 1481 1482 1483 1484
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1485 1486
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1487 1488 1489 1490
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1491 1492 1493
            else:
                pass
        return opt_ops, params_grads