test_detection.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
C
chengduoZH 已提交
16 17 18 19
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.layers.detection as detection
from paddle.v2.fluid.framework import Program, program_guard
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
import unittest


class TestBook(unittest.TestCase):
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
                shape=[20, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[2, 20, 10],
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
        print(str(program))


C
chengduoZH 已提交
53 54
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
55 56 57 58 59 60
        data_shape = [3, 224, 224]
        box, var = self.prior_box_output(data_shape)

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    def prior_box_output(self, data_shape):
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(
            input=images,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv2 = fluid.layers.conv2d(
            input=conv1,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv3 = fluid.layers.conv2d(
            input=conv2,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv4 = fluid.layers.conv2d(
            input=conv3,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv5 = fluid.layers.conv2d(
            input=conv4,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)

        box, var = detection.prior_box(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            min_ratio=20,
            max_ratio=90,
            # steps=[8, 16, 32, 64, 100, 300],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
        return box, var


C
chengduoZH 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class TestMultiBoxHead(unittest.TestCase):
    def test_prior_box(self):
        data_shape = [3, 224, 224]
        mbox_locs, mbox_confs = self.multi_box_output(data_shape)

    def multi_box_output(self, data_shape):
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(
            input=images,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv2 = fluid.layers.conv2d(
            input=conv1,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv3 = fluid.layers.conv2d(
            input=conv2,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv4 = fluid.layers.conv2d(
            input=conv3,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)
        conv5 = fluid.layers.conv2d(
            input=conv4,
            num_filters=3,
            filter_size=3,
            stride=2,
            use_cudnn=False)

        mbox_locs, mbox_confs = detection.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            flip=True)
        return mbox_locs, mbox_confs


160 161
if __name__ == '__main__':
    unittest.main()