test_elementwise_div_op.py 13.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
G
gongweibao 已提交
22 23 24 25 26


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
27
        self.python_api = paddle.divide
28
        self.dtype = np.float64
W
Wu Yi 已提交
29
        self.init_dtype()
G
gongweibao 已提交
30 31 32 33 34
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
H
hong 已提交
35

G
gongweibao 已提交
36
        self.inputs = {
W
Wu Yi 已提交
37 38
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
39 40 41
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

H
hong 已提交
42
    def check_eager(self):
H
hong 已提交
43
        return (not hasattr(self, "attrs") or (self.attrs["axis"] != -1))
H
hong 已提交
44

G
gongweibao 已提交
45
    def test_check_output(self):
H
hong 已提交
46
        self.check_output(check_eager=False)
G
gongweibao 已提交
47 48 49 50 51 52 53 54 55 56 57 58

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))

W
Wu Yi 已提交
59 60 61
    def init_dtype(self):
        pass

G
gongweibao 已提交
62

63 64 65
@unittest.skipIf(not core.is_compiled_with_cuda() or
                 not core.is_bfloat16_supported(core.CUDAPlace(0)),
                 "core is not compiled with CUDA and not support the bfloat16")
66 67 68
class TestElementwiseDivOpBF16(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
69
        self.python_api = paddle.divide
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        self.dtype = np.uint16

        x = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [12, 13]).astype(np.float32)

        out = np.divide(x, y)

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out', no_grad_set=set('Y'))


100 101
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
102 103 104
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
105
        self.python_api = paddle.divide
106
        self.inputs = {
107
            'X': np.random.uniform(0.1, 1, [20, 3, 4]).astype(np.float64),
108
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
109 110 111 112
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
113 114 115
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
116
        self.python_api = paddle.divide
G
gongweibao 已提交
117
        self.inputs = {
118 119
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
120 121 122 123 124 125 126
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
127
        self.python_api = paddle.divide
G
gongweibao 已提交
128
        self.inputs = {
129 130
            'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
131 132 133 134 135
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
136
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
G
gongweibao 已提交
137 138 139 140 141 142
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
143
        self.python_api = paddle.divide
G
gongweibao 已提交
144
        self.inputs = {
145 146
            'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
147 148 149 150 151
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
152
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
G
gongweibao 已提交
153 154 155 156 157 158
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
159
        self.python_api = paddle.divide
G
gongweibao 已提交
160
        self.inputs = {
161 162
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
163 164 165 166
        }

        self.outputs = {
            'Out':
167
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
G
gongweibao 已提交
168 169 170 171 172 173
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
174
        self.python_api = paddle.divide
G
gongweibao 已提交
175
        self.inputs = {
176 177
            'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float64")
G
gongweibao 已提交
178 179 180 181 182
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
183
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
G
gongweibao 已提交
184 185 186
        }


187 188 189
class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
190
        self.python_api = paddle.divide
191
        self.inputs = {
192 193
            'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float64")
194 195 196 197 198 199 200
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
201
        self.python_api = paddle.divide
202
        self.inputs = {
203 204
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float64")
205 206 207 208
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


209 210 211
class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
212
        self.python_api = paddle.divide
213
        self.inputs = {
214 215
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float64"),
216 217 218 219 220 221 222
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
223
        self.python_api = paddle.divide
224
        self.inputs = {
225 226
            'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float64"),
227 228 229 230 231 232 233
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
234
        self.python_api = paddle.divide
235
        self.inputs = {
236 237
            'X': np.random.uniform(0.1, 1, [10, 12]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float64"),
238 239 240 241 242 243 244
        }

        self.attrs = {'axis': 2}

        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


245 246 247
class TestElementwiseDivOp_INT(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
248
        self.python_api = paddle.divide
249 250 251 252
        self.dtype = np.int32
        self.init_dtype()
        self.inputs = {
            'X': np.random.randint(
253
                1, 5, size=[13, 17]).astype(self.dtype),
254
            'Y': np.random.randint(
255
                1, 5, size=[13, 17]).astype(self.dtype)
256 257 258 259 260 261 262 263 264 265
        }
        self.outputs = {'Out': self.inputs['X'] // self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        pass


266 267
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))


284 285 286 287 288 289 290 291 292 293 294 295 296
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None])
            one = 2.
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
            out_result, = exe.run(feed={'x': x}, fetch_list=[out])
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
297 298 299 300 301
class TestDivideOp(unittest.TestCase):
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
302

S
ShenLiang 已提交
303 304
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
305 306

    def test_dygraph(self):
S
ShenLiang 已提交
307 308 309 310 311 312 313 314 315
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
            z_expected = np.array([2., 0.6, 2.])
            self.assertEqual((np_z == z_expected).all(), True)
316 317


318 319 320
class TestComplexElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
321
        self.python_api = paddle.divide
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out / np.conj(self.y)
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)

    def test_check_output(self):
H
hong 已提交
352
        self.check_output(check_eager=False)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


C
chentianyu03 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x / self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = np.real(self.grad_out / np.conj(self.y))
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)


G
gongweibao 已提交
393
if __name__ == '__main__':
394
    paddle.enable_static()
G
gongweibao 已提交
395
    unittest.main()