pooling.cc 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
21 22 23 24 25
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
26
template <typename PoolProcess, typename T>
C
chengduoZH 已提交
27
class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> {
28
 public:
29
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
30 31 32
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  PoolProcess pool_process, framework::Tensor* output) {
33 34 35
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
36 37 38
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
39 40 41 42 43 44 45 46 47 48 49
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
50
    T* output_data = output->mutable_data<T>(context.GetPlace());
51 52 53 54 55 56 57 58 59 60 61

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
62 63

            T ele = pool_process.initial();
64 65
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
66
                pool_process.compute(ele, input_data[h * input_width + w]);
67 68 69
              }
            }
            int pool_size = (hend - hstart) * (wend - wstart);
70
            pool_process.finalize(ele, (static_cast<T>(pool_size)));
71 72 73 74 75 76 77 78 79 80
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
81 82 83 84 85
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
86
template <typename PoolProcess, class T>
C
chengduoZH 已提交
87
class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> {
88
 public:
89
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
90
                  const framework::Tensor& input,
91 92 93
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
94 95
                  PoolProcess pool_grad_process,
                  framework::Tensor* input_grad) {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
114
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
115 116 117 118 119 120 121 122 123 124 125 126

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
127
            float scale = 1.0 / pool_size;
128 129
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
130 131 132 133 134 135
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
                    input_grad_data[h * input_width + w],
                    static_cast<T>(scale));
136 137 138 139 140 141 142 143 144 145 146 147 148
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
149 150 151 152 153
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
154
template <class T>
C
chengduoZH 已提交
155
class MaxPool2dGradFunctor<platform::CPUPlace, T> {
156 157
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
158
                  const framework::Tensor& input,
159 160
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
C
chengduoZH 已提交
161 162
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
181
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
216
template class MaxPool2dGradFunctor<platform::CPUPlace, float>;
C
chengduoZH 已提交
217
template class MaxPool2dGradFunctor<platform::CPUPlace, double>;
C
chengduoZH 已提交
218 219

template class Pool2dFunctor<platform::CPUPlace,
220
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
221
template class Pool2dFunctor<platform::CPUPlace,
222
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
223
template class Pool2dGradFunctor<
224
    platform::CPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
225
template class Pool2dGradFunctor<
226
    platform::CPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
227
template class Pool2dFunctor<platform::CPUPlace,
228
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
229
template class Pool2dFunctor<platform::CPUPlace,
230
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
231
template class Pool2dGradFunctor<
232
    platform::CPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
233
template class Pool2dGradFunctor<
234
    platform::CPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
235

C
chengduoZH 已提交
236 237 238 239 240
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
241
template <typename PoolProcess, class T>
C
chengduoZH 已提交
242
class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> {
243
 public:
244
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
245 246 247
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  PoolProcess pool_process, framework::Tensor* output) {
248 249 250 251
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
252 253 254 255
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
256 257 258 259 260 261 262 263 264 265 266 267 268 269
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
270
    T* output_data = output->mutable_data<T>(context.GetPlace());
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
287
              T ele = pool_process.initial();
288 289 290
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
291
                    pool_process.compute(
292 293 294 295 296 297 298
                        ele,
                        input_data[(d * input_height + h) * input_width + w]);
                  }
                }
              }
              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
299
              pool_process.finalize(ele, static_cast<T>(pool_size));
300 301 302 303 304 305 306 307 308 309 310
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
311 312 313 314 315
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
316
template <typename PoolProcess, class T>
C
chengduoZH 已提交
317
class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> {
318
 public:
319
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
320
                  const framework::Tensor& input,
321 322 323
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
324 325
                  PoolProcess pool_grad_process,
                  framework::Tensor* input_grad) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
349
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
369
              float scale = 1.0 / pool_size;
370 371 372 373 374 375
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
376
                    pool_grad_process.compute(
377 378
                        input_data[input_idx], output_data[output_idx],
                        output_grad_data[output_idx],
379
                        input_grad_data[input_idx], static_cast<T>(scale));
380 381 382 383 384 385
                  }
                }
              }
            }
          }
        }
386 387 388 389
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
390 391 392 393 394
      }
    }
  }
};

C
chengduoZH 已提交
395 396 397 398 399
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
400
template <class T>
C
chengduoZH 已提交
401
class MaxPool3dGradFunctor<platform::CPUPlace, T> {
402 403
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
404
                  const framework::Tensor& input,
405 406
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
C
chengduoZH 已提交
407 408
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
432
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
476
template class MaxPool3dGradFunctor<platform::CPUPlace, float>;
C
chengduoZH 已提交
477
template class MaxPool3dGradFunctor<platform::CPUPlace, double>;
C
chengduoZH 已提交
478 479

template class Pool3dFunctor<platform::CPUPlace,
480
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
481
template class Pool3dFunctor<platform::CPUPlace,
482
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
483
template class Pool3dGradFunctor<
484
    platform::CPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
485
template class Pool3dGradFunctor<
486
    platform::CPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
487
template class Pool3dFunctor<platform::CPUPlace,
488
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
489
template class Pool3dFunctor<platform::CPUPlace,
490
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
491
template class Pool3dGradFunctor<
492
    platform::CPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
493
template class Pool3dGradFunctor<
494
    platform::CPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
C
chengduoZH 已提交
495

C
chengduoZH 已提交
496 497 498 499 500
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
501 502
template <typename T1, typename T2>
class MaxPool2dWithIndexFunctor<platform::CPUPlace, T1, T2> {
C
chengduoZH 已提交
503 504
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
505 506 507
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
508 509 510
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
511 512 513
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
514 515 516 517 518 519 520 521 522
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
523 524 525
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
526 527 528 529 530 531 532 533 534 535 536 537

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

C
chengduoZH 已提交
538
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
561 562 563 564 565
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
566 567
template <typename T1, typename T2>
class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T1, T2> {
C
chengduoZH 已提交
568 569 570 571
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
C
chengduoZH 已提交
572 573 574 575 576
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
577 578 579 580 581 582
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
583 584 585
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
605 606 607 608
template class MaxPool2dWithIndexFunctor<platform::CPUPlace, float, int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, float, int>;
template class MaxPool2dWithIndexFunctor<platform::CPUPlace, double, int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, double, int>;
C
chengduoZH 已提交
609

C
chengduoZH 已提交
610 611 612 613 614
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
615 616
template <typename T1, typename T2>
class MaxPool3dWithIndexFunctor<platform::CPUPlace, T1, T2> {
C
chengduoZH 已提交
617 618
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
619 620 621
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
622 623 624 625
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
626 627 628 629
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
630 631 632 633 634 635 636 637 638 639 640 641
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
642 643 644
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
662
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
689 690 691 692 693
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
694 695
template <typename T1, typename T2>
class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T1, T2> {
C
chengduoZH 已提交
696 697 698 699
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
C
chengduoZH 已提交
700 701 702 703 704 705
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
706 707 708 709 710 711 712
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
713 714 715
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
738 739 740 741
template class MaxPool3dWithIndexFunctor<platform::CPUPlace, float, int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, float, int>;
template class MaxPool3dWithIndexFunctor<platform::CPUPlace, double, int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, double, int>;
742 743 744
}  // namespace math
}  // namespace operators
}  // namespace paddle