gru_unit_op.h 10.1 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include "paddle/operators/activation_op.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

31 32
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

G
guosheng 已提交
33
template <typename Place, typename T>
34
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
35
 public:
36 37 38 39 40 41 42 43 44 45 46 47 48 49
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
50
  void Compute(const framework::ExecutionContext& context) const override {
51 52 53 54 55
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
56
    gate->mutable_data<T>(context.GetPlace());
57
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
58
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
59
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
    auto place = context.GetEigenDevice<Place>();

    // calculate unactivated gate outputs
G
guosheng 已提交
73 74 75 76 77 78 79 80
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = x +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    } else {
      g.device(place) = x;
    }
G
guosheng 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         2 * frame_size, frame_size, 1, hidden_prev_data,
                         frame_size, weight_data, frame_size * 2, 1, gate_data,
                         frame_size * 3);

    // calculate activited gate
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
93 94
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
95 96
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
97 98
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
99 100 101 102 103 104 105 106 107
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         frame_size, frame_size, 1, reset_hidden_prev_data,
                         frame_size, weight_data + frame_size * frame_size * 2,
                         frame_size, 1, gate_data + frame_size * 2,
                         frame_size * 3);

    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
108 109
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
110 111 112
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
G
guosheng 已提交
113
    h.device(place) = u * (c - h_p) + h_p;
G
guosheng 已提交
114 115 116 117
  }
};

template <typename Place, typename T>
118
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
119
 public:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
136
  void Compute(const framework::ExecutionContext& context) const override {
137 138 139 140 141 142 143
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
144
    auto* hidden_prev_grad =
145
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
146
    auto* weight_grad =
147 148
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
149 150 151 152 153
    Tensor gate_grad;
    Tensor reset_hidden_prev_grad;

    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
154 155
    T* gate_grad_data =
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
G
guosheng 已提交
156
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
157 158
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
        reset_hidden_prev->dims(), context.GetPlace());
G
guosheng 已提交
159 160 161 162 163 164 165 166

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
    auto place = context.GetEigenDevice<Place>();

167 168 169
    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

G
guosheng 已提交
170 171 172 173 174 175 176 177 178
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
    auto r = g.slice(r_offsets, extents);  // reset gate
    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
179
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
G
guosheng 已提交
180
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
G
guosheng 已提交
181
    // backward for unactivated output candidate
182
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
G
guosheng 已提交
183
                   d_g.slice(c_offsets, extents), d_h * u);
G
guosheng 已提交
184 185 186 187 188 189 190
    // backward for reset_hidden_prev
    math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                         frame_size, frame_size, 1,
                         gate_grad_data + frame_size * 2, frame_size * 3,
                         weight_data + frame_size * frame_size * 2, frame_size,
                         0, reset_hidden_prev_grad_data, frame_size);
    // backward for unactivated reset gate
191 192
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    // backward for weight
    if (weight_grad) {
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
      // backward for state_weight
      math::gemm<Place, T>(
          context.device_context(), true, false, frame_size, frame_size,
          batch_size, 1, reset_hidden_prev_data, frame_size,
          gate_grad_data + frame_size * 2, frame_size * 3, 0,
          weight_grad_data + frame_size * frame_size * 2, frame_size);

      // backward for update_gate_weight and reset_gate_weight
      math::gemm<Place, T>(context.device_context(), true, false, frame_size,
                           frame_size * 2, batch_size, 1, hidden_prev_data,
                           frame_size, gate_grad_data, frame_size * 3, 0,
                           weight_grad_data, frame_size * 2);
    }
G
guosheng 已提交
209
    // backward for hidden_prev
210 211 212 213 214 215 216 217 218 219
    if (hidden_prev_grad) {
      T* hidden_prev_grad_data =
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
      d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
      math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                           frame_size, frame_size * 2, 1, gate_grad_data,
                           frame_size * 3, weight_data, frame_size * 2, 1,
                           hidden_prev_grad_data, frame_size);
    }
G
guosheng 已提交
220
    // backward for input
221 222 223 224 225
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto d_x = EigenMatrix<T>::From(*input_grad);
      d_x.device(place) = d_g;
    }
G
guosheng 已提交
226
    // backward for bias
G
guosheng 已提交
227 228 229 230 231
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
      auto d_b = EigenMatrix<T>::From(*bias_grad);
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
G
guosheng 已提交
232 233 234 235 236
  }
};

}  // namespace operators
}  // namespace paddle