MKLDNNConvLayer.h 5.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "MKLDNNLayer.h"
#include "mkldnn.hpp"

namespace paddle {
21 22 23
typedef mkldnn::convolution_forward conv_fwd;
typedef mkldnn::convolution_backward_weights conv_bwdWgt;
typedef mkldnn::convolution_backward_data conv_bwdData;
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

/**
 * @brief A subclass of MKLDNNLayer conv layer.
 *
 * The config file api is mkldnn_conv
 */
class MKLDNNConvLayer : public MKLDNNLayer {
protected:
  // padding height and width
  int ph_, pw_;
  // stride height and width
  int sh_, sw_;
  // dilation height and width
  int dh_, dw_;
  // filter(kenerl) height and width
  int fh_, fw_;
  // group number
  int gp_;

43
  // in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_
T
tensor-tang 已提交
44
  MKLDNNMatrixPtr wgtValBwdData_;
45
  // convert handle from wgtVal_ to wgtValBwdData_
T
tensor-tang 已提交
46 47
  std::shared_ptr<mkldnn::reorder> cvtWgtVal_;

48
  // save forward primitive_desc, which can be used backward
49
  std::shared_ptr<conv_fwd::primitive_desc> fwdPD_;
T
tensor-tang 已提交
50

51
  // whether the weight has been init
T
tensor-tang 已提交
52 53
  bool hasInitedWgt_;

54 55
  // true by default, which impact the calculation of output image size.
  // details can refer to mathUtil.h
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  bool caffeMode_;

  // weight and bias
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> biases_;

public:
  explicit MKLDNNConvLayer(const LayerConfig& config)
      : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}

  ~MKLDNNConvLayer() {}

  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;

  void reshape(
72
      int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override;
T
tensor-tang 已提交
73 74

  void resetFwd(std::vector<mkldnn::primitive>& pipeline,
75
                std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
76 77 78
                MKLDNNMatrixPtr& out) override;

  void resetBwd(std::vector<mkldnn::primitive>& pipeline,
79
                std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90
                MKLDNNMatrixPtr& out) override;

  void updateWeights(const UpdateCallback& callback) override;

  void convertWeightsFromPaddle() override;

  void convertWeightsToPaddle() override;

  void printSizeInfo() override {
    MKLDNNLayer::printSizeInfo();
    VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
T
tensor-tang 已提交
91
                       << ", ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
T
tensor-tang 已提交
92 93 94
                       << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
  }

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
protected:
  /**
   * load the dims settings of this conv
   */
  void loadConvSettings(mkldnn::memory::dims& wgt,
                        mkldnn::memory::dims& bias,
                        mkldnn::memory::dims& stride,
                        mkldnn::memory::dims& dilation,
                        mkldnn::memory::dims& padL,
                        mkldnn::memory::dims& padR);

  void resetFwdPD(std::shared_ptr<conv_fwd::primitive_desc>& pd);
  void resetFwdBuffers(std::shared_ptr<conv_fwd::primitive_desc>& pd,
                       MKLDNNMatrixPtr& in,
                       MKLDNNMatrixPtr& wgt,
                       MKLDNNMatrixPtr& bias,
                       MKLDNNMatrixPtr& out);
  void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
                        std::shared_ptr<conv_fwd::primitive_desc>& pd,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out);
  void resetBwdWgtPD(std::shared_ptr<conv_bwdWgt::primitive_desc>& pd);
  void resetBwdDataPD(std::shared_ptr<conv_bwdData::primitive_desc>& pd);
  void resetBwdBuffers(std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
                       std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
                       MKLDNNMatrixPtr& in,
                       MKLDNNMatrixPtr& wgt,
                       MKLDNNMatrixPtr& bias,
                       MKLDNNMatrixPtr& out);
  void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
                        std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
                        std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out);

  /**
   * reset MKLDNNMatrix of weight value for backward data
   * since the primitive_desc would be different with wgtVal_
   */
  void resetWgtValBwdData(std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
                          MKLDNNMatrixPtr& wgt);

T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  /**
   * get padding_r according to
   * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
   * test_convolution_forward_common.hpp
   * @note: mkldnn dilation start from 0 while paddle start from 1
   */
  mkldnn::memory::dims getPaddingR() const {
    mkldnn::memory::dims padR = {ph_, pw_};
    for (int i = 0; i < 2; ++i) {
      if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
        ++padR[0];
      }
      if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
        ++padR[1];
      }
    }
    return padR;
  }
};

}  // namespace paddle