activation_op.h 91.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

27
#include <type_traits>
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
30
#include "paddle/fluid/framework/tensor_util.h"
31
#include "paddle/fluid/platform/enforce.h"
32
#include "paddle/fluid/platform/float16.h"
33
#include "paddle/phi/kernels/funcs/blas/blas.h"
34 35 36 37
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

38 39
#include "paddle/phi/kernels/funcs/activation_functor.h"

Q
qijun 已提交
40 41 42
namespace paddle {
namespace operators {

43 44
using framework::To32BitIndex;

45
using ActBwdOpFwdDeps = phi::funcs::ActBwdOpFwdDeps;
46

C
chengduo 已提交
47 48 49 50 51 52
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

53 54 55 56 57
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
58 59 60 61 62 63 64 65
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound(
                   "Cannot get output Variable Out, variable name = %s",
                   context.OutputName("Out")));
H
hong 已提交
66
  if (CanBeUsedBySelectedRows.count(context.Type())) {
67 68 69 70 71 72 73 74
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

75 76 77 78
  PADDLE_ENFORCE_NOT_NULL(*Out, platform::errors::NotFound(
                                    "Cannot get the tensor from the Variable "
                                    "Output(Out), variable name = %s",
                                    context.OutputName("Out")));
79 80
}

81
template <ActBwdOpFwdDeps kDepValue>
82 83 84 85 86 87
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
88 89
  const framework::Variable* out_var = nullptr;

90 91
  if (static_cast<int>(kDepValue) &
      static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
92
    out_var = context.InputVar("Out");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     context.InputName("Out")));
  }

  PADDLE_ENFORCE_NOT_NULL(
      out_grad_var, platform::errors::NotFound(
                        "Cannot get input Variable %s, variable name = %s",
                        framework::GradVarName("Out"),
                        context.InputName(framework::GradVarName("Out"))));
  PADDLE_ENFORCE_NOT_NULL(
      x_grad_var, platform::errors::NotFound(
                      "Cannot get output Variable %s, variable name = %s",
                      framework::GradVarName("X"),
                      context.OutputName(framework::GradVarName("X"))));
109

H
hong 已提交
110
  if (CanBeUsedBySelectedRows.count(context.Type())) {
111 112 113 114
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
115 116 117 118 119 120 121 122

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

123 124 125 126
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
127 128 129 130 131 132

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
133
  }
134

135 136 137 138 139
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
140

141
  if (static_cast<int>(kDepValue) & static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
C
chengduo 已提交
142
    auto x_var = context.InputVar("X");
143 144 145 146
    PADDLE_ENFORCE_NOT_NULL(x_var, platform::errors::NotFound(
                                       "Cannot get the tensor from the "
                                       "Variable Input(X), variable name = %s",
                                       context.InputName("X")));
H
hong 已提交
147
    if (CanBeUsedBySelectedRows.count(context.Type())) {
148
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
149
    } else {
150
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
151
    }
152
  } else {
H
hong 已提交
153
    VLOG(10) << " Inplace activation of Op : " << context.Type();
154 155 156
    *X = *dX;
  }
}
C
chengduo 已提交
157

158 159 160 161 162
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
163

164 165 166 167
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
168
    Out->mutable_data<T>(context.GetPlace());
169

170 171 172 173
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
174 175
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
176
    Functor functor;
177 178 179 180 181

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
182 183 184 185 186 187 188 189
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
190 191 192
  }
};

Q
QI JUN 已提交
193
template <typename DeviceContext, typename Functor>
194 195
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
196
 public:
197
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
198
  void Compute(const framework::ExecutionContext& context) const override {
199 200 201
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
202 203
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
204
    dX->mutable_data<T>(context.GetPlace());
205 206 207 208 209 210 211 212
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
213 214
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
215
    Functor functor;
216 217 218 219
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
220 221 222 223 224 225 226 227 228
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out), To32BitIndex(dout),
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
229 230 231
  }
};

232 233 234 235 236 237 238 239 240
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

241
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
242
template <typename T>
243
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
244 245 246
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
247 248 249
  }
};

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#define USE_PHI_FUNCTOR(name)                         \
  template <typename T>                               \
  using name##Functor = phi::funcs::name##Functor<T>; \
  template <typename T>                               \
  using name##GradFunctor = phi::funcs::name##GradFunctor<T>;

USE_PHI_FUNCTOR(Cos)
USE_PHI_FUNCTOR(Tan)
USE_PHI_FUNCTOR(Acos)
USE_PHI_FUNCTOR(Sin)
USE_PHI_FUNCTOR(Asin)
USE_PHI_FUNCTOR(Atan)
USE_PHI_FUNCTOR(Sinh)
USE_PHI_FUNCTOR(Cosh)
USE_PHI_FUNCTOR(Asinh)
USE_PHI_FUNCTOR(Acosh)
USE_PHI_FUNCTOR(Atanh)

268
template <typename T>
269
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
270 271 272 273
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
274
  }
275

276 277 278
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
279 280
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
    Out
    DOut -> SigmoidGradGrad -> DOutNew
    DDX                        DDOut

    DDOut = (1-Out)*Out*DDX
    DOutNew = (1-2*Out)*DOut*DDX
*/
template <typename T>
struct SigmoidGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidGradGrad"));

    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
305
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SigmoidGradGrad"));
306 307 308 309 310
      dout_new.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
311
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SigmoidGradGrad"));
312 313 314
      ddout.device(*d) = (static_cast<T>(1) - out) * out * ddx;
    }
  }
315 316 317
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
318 319
};

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
    Out
    DOut                            D_Dout
    DDx     -> SigmoidTripleGrad -> D_DDx
    D_DDout                         d_OutNew
    D_Dout_new

    D_Dout = (1-2*Out)*DDx*D_Dout_new
    D_DDx = (1-Out)*Out*D_DDout + (1-2*Out)*DOut*D_Dout_new
    D_OutNew = (DDx-2*Out*DDx)*D_DDout - 2*DOut*DDx*D_Dout_new

    Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    D_OutNew, D_DOut, D_DDx               // output
*/
template <typename T>
struct SigmoidTripleGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  const framework::Tensor* d_DDOut,
                  const framework::Tensor* d_dOut_New,
                  framework::Tensor* d_d_Out, framework::Tensor* d_Out_New,
                  framework::Tensor* d_DDx) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidTripleGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidTripleGrad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidTripleGrad"));
    auto d_ddOut = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
    auto d_dOutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
        d_dOut_New, "Input", "D_DOut_New", "SigmoidTripleGrad"));

    if (d_Out_New) {
      auto d_OutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
          d_Out_New, "Output", "D_OutNew", "SigmoidTripleGrad"));
      d_OutNew.device(*d) = (ddx - static_cast<T>(2) * out * ddx) * d_ddOut -
                            static_cast<T>(2) * dout * ddx * d_dOutNew;
    }
    if (d_d_Out) {
      auto d_dOut = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "SigmoidTripleGrad"));
      d_dOut.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * ddx * d_dOutNew;
    }
    if (d_DDx) {
      auto d_ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "SigmoidTripleGrad"));
      d_ddx.device(*d) =
          (static_cast<T>(1) - out) * out * d_ddOut +
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * d_dOutNew;
    }
  }
375 376 377
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
378 379
};

M
minghaoBD 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
// silu(x) = x / (1 + exp(-x))
template <typename T>
struct SiluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    auto temp = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
    out.device(d) = x * temp;
  }
};

// silu'(x) = (1 / (1 + e^{-x}))  * (1 + out * e^{-x}))
template <typename T>
struct SiluGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp1 = static_cast<T>(1) + (-x).exp();  // 1+e^(-x)
    auto temp2 = x * (-x).exp();                  // x*e^(-x)
    dx.device(d) = dout * ((static_cast<T>(1) / temp1) *
                           (static_cast<T>(1) + (temp2 / temp1)));
  }

402
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
M
minghaoBD 已提交
403 404
};

405 406 407 408
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
409
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
410 411 412 413 414 415 416 417 418 419
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
420 421
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
422
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
423
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
424 425 426 427 428 429 430 431
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
432 433 434
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
435 436
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
437
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
438
  }
439

440
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
441 442
};

Q
qijun 已提交
443
// exp(x) = e^x
444 445
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
446 447 448
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
449 450 451
  }
};

452 453
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
454 455 456 457
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
458
  }
459

460 461 462
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
463 464
};

R
ronnywang 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
// expm1(x) = e^x - 1
template <typename T>
struct Expm1Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.expm1();
  }
};

template <typename T>
struct Expm1GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out + dout;
  }

482 483 484
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
485 486
};

Q
qijun 已提交
487
// relu(x) = max(x, 0)
488 489

template <typename T>
490 491 492
using ReluCPUFunctor = phi::funcs::ReluCPUFunctor<T>;
template <typename T>
using ReluGradFunctor = phi::funcs::ReluGradFunctor<T>;
Q
qijun 已提交
493

Q
qijun 已提交
494
template <typename T>
495
using ReluGradGradFunctor = phi::funcs::ReluGradGradFunctor<T>;
496

497 498
template <typename T>
using ReluCUDAFunctor = phi::funcs::ReluCUDAFunctor<T>;
Q
qijun 已提交
499

500
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
501 502
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
503 504 505
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
506 507 508 509
  }
};

template <typename T>
510
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
511 512 513 514
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
515
  }
516

517 518 519
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
520 521
};

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
template <typename T>
struct TanhGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "TanhGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "TanhGradGrad"));
    // tanh grad grad : ddout = (1 - out^2) * ddx, dout = - (dout_old * 2 * out
    // * ddx)
    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
539
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "TanhGradGrad"));
540 541 542 543 544
      dout_new.device(*d) =
          static_cast<T>(-1) * dout * static_cast<T>(2) * out * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
545
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "TanhGradGrad"));
546 547 548
      ddout.device(*d) = (static_cast<T>(1) - out * out) * ddx;
    }
  }
549 550 551
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
552
};
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
    Out
    DOut                            D_Dout
    DDx     -> TanhTripleGrad ->    D_DDx
    D_DDout                         d_OutNew
    D_Dout_new

    D_Dout = (-2) * Out * DDx * D_Dout_new
    D_DDx = (1-Out^2)*D_DDout + (-2) * Out * DOut * D_Dout_new
    D_OutNew = (-2) * Out * DDx * D_DDout + (-2) * DOut * DDx * D_Dout_new

    Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    D_OutNew, D_DOut, D_DDx               // output
*/
template <typename T>
struct TanhTripleGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  const framework::Tensor* d_DDOut,
                  const framework::Tensor* d_dOut_New,
                  framework::Tensor* d_d_Out, framework::Tensor* d_Out_New,
                  framework::Tensor* d_DDx) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "TanhTripleGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "TanhTripleGrad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "DOut", "TanhTripleGrad"));
    auto d_ddOut = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "TanhTripleGrad"));
    auto d_dOutNew = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_dOut_New, "Input", "D_DOut_New", "TanhTripleGrad"));

    if (d_Out_New) {
      auto d_OutNew = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_Out_New, "Output", "D_OutNew", "TanhTripleGrad"));
      d_OutNew.device(*d) = (static_cast<T>(-2) * out * ddx * d_ddOut) -
                            (static_cast<T>(2) * dout * ddx * d_dOutNew);
    }
    if (d_d_Out) {
      auto d_dOut = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "TanhTripleGrad"));
      d_dOut.device(*d) = static_cast<T>(-2) * out * ddx * d_dOutNew;
    }
    if (d_DDx) {
      auto d_ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "TanhTripleGrad"));
      d_ddx.device(*d) = (static_cast<T>(1) - (out * out)) * d_ddOut -
                         static_cast<T>(2) * out * dout * d_dOutNew;
    }
  }
606 607 608
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
609
};
610

K
Kavya Srinet 已提交
611 612 613 614
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
615 616 617
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
618 619 620 621 622
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
623 624 625 626
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
627
  }
628

629
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
K
Kavya Srinet 已提交
630 631
};

632 633 634 635 636 637 638 639 640
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
641 642
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
643 644
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
645
    out.device(d) = x * (temp1 || temp2).template cast<T>();
646 647 648 649 650 651 652 653 654 655 656
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
657 658 659
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
660 661
    auto temp1 = x < static_cast<T>(threshold * -1.f);
    auto temp2 = x > static_cast<T>(threshold);
662
    dx.device(d) = dout * (temp1 || temp2).template cast<T>();
663
  }
664

665
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
666 667
};

K
Kexin Zhao 已提交
668
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
669 670 671 672 673 674 675 676
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
677 678
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
679
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
680 681
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
682
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
683 684 685 686 687 688 689 690 691
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
692 693 694
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
695
    auto lambdaT = static_cast<T>(lambda);
Z
Zeng Jinle 已提交
696 697
    auto temp1 = (x > lambdaT).template cast<T>();
    auto temp2 = (x < -lambdaT).template cast<T>();
F
fengjiayi 已提交
698
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
699
  }
700

701
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
702 703
};

Q
qijun 已提交
704
// sqrt(x) = x^(1/2)
705 706
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
707 708 709
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
710 711 712 713
  }
};

template <typename T>
714
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
715 716 717
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
718
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
719
  }
720

721 722 723
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
724 725
};

Z
zhoukunsheng 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
740
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
741
  }
Z
zhoukunsheng 已提交
742

743 744 745
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Z
zhoukunsheng 已提交
746 747
};

D
dzhwinter 已提交
748 749 750
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
751 752 753
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
754 755 756 757 758
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
759 760 761
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
762
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
763
  }
764

765 766 767
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
  }
D
dzhwinter 已提交
768 769 770 771 772
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
773 774
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
775
    out.device(d) = x.floor();
D
dzhwinter 已提交
776 777 778 779 780 781
  }
};

// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
782 783 784
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
785 786 787
  }
};

Q
qijun 已提交
788 789
// reciprocal(x) = 1 / x
template <typename T>
790
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
791 792 793
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
794 795 796
  }
};

797
template <typename T>
798
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
799 800 801 802
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
803
  }
804

805 806 807
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
808 809 810
};

// log(x) = natural logarithm of x
811 812
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
813 814 815
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
816 817 818
  }
};

819
template <typename T>
820
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
821 822 823 824
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
825
  }
826

827
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
Q
qijun 已提交
828 829
};

J
joejiong 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
// log2(x) = logarithm to the base 2 of the elements of x
template <typename T>
struct Log2Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(2));
  }
};

// the gradient of log2(x) is 1/(x*ln(2))
template <typename T>
struct Log2GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(2)));
  }

848
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
J
joejiong 已提交
849 850
};

J
joejiong 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
// log10(x) = logarithm to the base 10 of the elements of x
template <typename T>
struct Log10Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(10));
  }
};

// the gradient of log10(x) is 1/(x*ln(10))
template <typename T>
struct Log10GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(10)));
  }

869
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
J
joejiong 已提交
870 871
};

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
// log1p(x) = natural logarithm of x+1
template <typename T>
struct Log1pFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (static_cast<T>(1) + x).log();
  }
};

template <typename T>
struct Log1pGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / (x + static_cast<T>(1)));
  }

889
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
890 891
};

Q
qijun 已提交
892
// square(x) = x^2
893 894
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
895 896 897
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
898
  }
899
};
Q
qijun 已提交
900

901
template <typename T>
902
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
903 904 905 906
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
907
  }
908

909
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
910 911
};

912 913 914 915 916 917 918 919 920 921
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
922

F
fengjiayi 已提交
923 924 925
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
926
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
927 928 929
  }
};

930 931 932 933 934 935 936
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
937 938 939 940
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
941 942
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
943
  }
944

945
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
946 947
};

948 949 950 951 952 953 954 955 956
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
957 958 959
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
960
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
961 962 963 964 965 966 967 968 969
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
970 971 972
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
973 974 975 976
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
977
  }
978

979 980 981
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
982 983
};

H
huangjun12 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

1026
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
H
huangjun12 已提交
1027 1028
};

1029 1030 1031 1032
// For numerical stability, using the following formula instead of softplus(x) =
// log(1 + exp(x))
// softplus(x) = log(1 + exp(beta * x)) / beta when beta * x <= threshold(beta =
// 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1033 1034
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
1035 1036 1037 1038 1039 1040
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1041 1042
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
1043 1044 1045 1046
    auto x_beta = static_cast<T>(beta) * x;
    out.device(d) = (x_beta > static_cast<T>(threshold))
                        .select(x, (static_cast<T>(1) + x_beta.exp()).log() /
                                       static_cast<T>(beta));
K
kexinzhao 已提交
1047 1048 1049
  }
};

1050 1051 1052 1053
// For numerical stability, using the following formula instead of
// d(softplus(x))/dx = 1 / (1 + exp(-x))
// d(softplus(x))/dx = 1 / (1 + exp(-beta * x)) when beta * x <= threshold(beta
// = 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
1054 1055
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
1056 1057 1058 1059 1060 1061
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
1062 1063 1064
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1065
    auto x_beta = static_cast<T>(beta) * x;
F
fengjiayi 已提交
1066
    dx.device(d) =
1067 1068
        (x_beta > static_cast<T>(threshold))
            .select(dout, dout / (static_cast<T>(1) + (-x_beta).exp()));
K
kexinzhao 已提交
1069
  }
1070

1071
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
K
kexinzhao 已提交
1072 1073
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
// mish(x) = x * tanh(softplus(x))
// softplus(x) = x, if x > threshold
//             = ln(1 + exp(x)), otherwise
template <typename T>
struct MishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    auto sp = (x > static_cast<T>(threshold))
                  .select(x, (static_cast<T>(1) + x.exp()).log());
    out.device(d) = x * sp.tanh();
  }
};

// dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
// sp = softplus(x)
template <typename T>
struct MishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
    auto sp = (x > static_cast<T>(threshold))
                  .select(x, (static_cast<T>(1) + x.exp()).log());
    auto gsp = static_cast<T>(1) - (-sp).exp();
    auto tsp = sp.tanh();
    dx.device(d) = dout * (tsp + x * (static_cast<T>(1) - tsp * tsp) * gsp);
  }

1111
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1112 1113
};

1114 1115
// softsign(x) = x / (1 + |x|)
template <typename T>
1116
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1117 1118 1119
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
1120 1121 1122 1123 1124 1125
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
1126
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
1127 1128 1129
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
1130
    dx.device(d) =
F
fengjiayi 已提交
1131
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
1132
  }
1133

1134
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1135 1136
};

1137 1138 1139 1140 1141 1142
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
1143

F
fengjiayi 已提交
1144 1145
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1146 1147
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
1148
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
1149 1150 1151
  }
};

1152 1153 1154 1155 1156 1157
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
1158 1159 1160
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1161
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
1162
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
1163
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
1164
  }
1165

1166 1167 1168
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
1169 1170
};

K
Kavya Srinet 已提交
1171 1172 1173 1174 1175 1176
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1177

F
fengjiayi 已提交
1178 1179
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1180 1181 1182 1183 1184
    if (alpha < 1.f) {
      out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
    } else {
      out.device(d) = x.cwiseMin(static_cast<T>(alpha) * x);
    }
1185 1186 1187
  }
};

K
Kavya Srinet 已提交
1188 1189 1190 1191 1192 1193
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1194 1195 1196
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
1197
    auto temp1 =
1198 1199
        static_cast<T>(alpha) * (x < static_cast<T>(0)).template cast<T>();
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>();
F
fengjiayi 已提交
1200
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1201
  }
1202

1203
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1204 1205
};

1206 1207 1208 1209 1210 1211
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1212

F
fengjiayi 已提交
1213 1214
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1215 1216 1217
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)), x);
1218 1219 1220
  }
};

1221 1222 1223 1224 1225 1226
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1227 1228 1229
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
zhupengyang 已提交
1230 1231 1232 1233 1234 1235
    // case 1: alpha >= 0
    // dx = dout, if out > 0
    // dx = dout * (out + alpha), if out <= 0
    dx.device(d) = (out > static_cast<T>(0))
                       .select(dout, dout * (out + static_cast<T>(alpha)));
  }
1236

1237
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
Z
zhupengyang 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
};

template <typename T>
struct ELUGradNegativeAlphaFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    // case 2: alpha < 0
    // dx = dout, if x > 0
    // dx = dout * (out + alpha), if x <=0
    dx.device(d) = (x > static_cast<T>(0))
                       .select(dout, dout * static_cast<T>(alpha) * x.exp());
1254
  }
1255

1256
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1257 1258
};

Z
zhupengyang 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
template <typename DeviceContext, typename T>
class ELUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    const float alpha = context.Attr<float>("alpha");
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "elu_grad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "elu_grad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "dOut", "elu_grad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "dX", "elu_grad"));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();

    if (alpha > 0) {
      ELUGradFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    } else {
      ELUGradNegativeAlphaFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    }
  }
};

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
template <typename T>
struct CELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) *
                        ((x / static_cast<T>(alpha)).exp() - static_cast<T>(1)),
                    x);
  }
};

template <typename T>
struct CELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp_a_pos = static_cast<T>(alpha > 0);
    auto temp_a_neg = static_cast<T>(alpha <= 0);
    auto temp_x_pos = (x > static_cast<T>(0)).template cast<T>();
    auto temp_x_neg = (x <= static_cast<T>(0)).template cast<T>();

    // dx = dout, if alpha > 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
    // dx = dout , if alpha < 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
    dx.device(d) =
        dout * temp_a_pos * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_pos * temp_x_neg +
        dout * temp_a_neg * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_neg * temp_x_neg;
  }

1336
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1337 1338
};

Q
QI JUN 已提交
1339
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1340 1341 1342 1343 1344 1345
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1346 1347 1348
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1349 1350 1351
  }
};

1352 1353 1354 1355 1356 1357
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1358 1359 1360 1361
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1362
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1363
  }
1364

1365
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1366 1367
};

W
wangzhen38 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
template <typename T>
struct LogitFunctor {
  template <typename Device, typename X, typename Out, typename P>
  void operator()(Device d, X x, Out out, P p, float eps) const {
    // logit(x) = ln(x/(1-x))
    auto tmp_x =
        (x.cwiseMin(static_cast<T>(1.0 - eps))).cwiseMax(static_cast<T>(eps));

    if (!eps) {
      out.device(d) = (x < static_cast<T>(0.0) || x > static_cast<T>(1.0))
                          .select(p.constant(static_cast<T>(NAN)),
                                  (tmp_x / (static_cast<T>(1) - tmp_x)).log());
    } else {
      out.device(d) = (tmp_x / (static_cast<T>(1) - tmp_x)).log();
    }
  }
};

template <typename T>
struct LogitGradFunctor {
  template <typename Device, typename X, typename dOut, typename dX, typename P>
  void operator()(Device d, X x, dOut dout, dX dx, P p, float eps) const {
    // logit(x)' = 1/(x*(1-x))
    dx.device(d) =
        (x < static_cast<T>(eps) || x > static_cast<T>(1.0 - eps))
            .select(p.constant(static_cast<T>(0)),
                    dout * (static_cast<T>(1) / ((static_cast<T>(1) - x) * x)));
  }
};

1398 1399 1400 1401 1402 1403 1404
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1405

F
fengjiayi 已提交
1406 1407 1408
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1409
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1410 1411 1412
  }
};

1413 1414 1415 1416 1417 1418 1419
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1420

F
fengjiayi 已提交
1421 1422 1423
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1424 1425 1426
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1427
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1428
  }
1429

1430
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
Q
qijun 已提交
1431 1432
};

1433 1434 1435 1436 1437 1438 1439
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1440 1441
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1442
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1443
    out.device(d) = (x > th).template cast<T>() * x;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1454 1455 1456
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1457
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1458
    dx.device(d) = dout * (x > th).template cast<T>();
1459
  }
1460

1461
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1462 1463
};

1464 1465 1466 1467 1468 1469 1470 1471
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1472 1473
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1474
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1475 1476
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1487 1488 1489 1490 1491 1492 1493
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1494
  }
1495

1496 1497 1498
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
1499 1500
};

A
Abhinav Arora 已提交
1501 1502 1503 1504 1505 1506 1507
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1508 1509 1510
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1521 1522
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1523
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1524
    auto temp1 = static_cast<T>(1) /
1525
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1526
    auto out = x * temp1;
D
dzhwinter 已提交
1527 1528
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1529
  }
1530

1531
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
A
Abhinav Arora 已提交
1532 1533
};

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1546 1547 1548 1549
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
H
hong 已提交
1550
  if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
1562 1563 1564 1565 1566
  PADDLE_ENFORCE_NOT_NULL(
      *ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable Output, variable name = %s",
          ctx.OutputName("DDX")));
1567

1568
  if (static_cast<int>(kDepValue) & static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
1569
    auto x_var = ctx.InputVar("X");
1570 1571
    PADDLE_ENFORCE_NOT_NULL(
        x_var, platform::errors::NotFound(
1572
                   "Cannot get input Variable Out, variable name = %s",
1573
                   ctx.InputName("X")));
1574
    auto dx_var = ctx.OutputVar("DX");
H
hong 已提交
1575
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
H
hong 已提交
1588
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1589 1590
    *X = *ddX;
  }
1591 1592
  if (static_cast<int>(kDepValue) &
      static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
1593
    auto out_var = ctx.InputVar("Out");
1594 1595 1596 1597 1598
    PADDLE_ENFORCE_NOT_NULL(
        out_var,
        platform::errors::NotFound(
            "Cannot get the tensor from the Variable Out, variable name = %s",
            ctx.InputName("Out")));
1599
    auto dout_var = ctx.OutputVar("DOut");
H
hong 已提交
1600
    if (CanBeUsedBySelectedRows.count(ctx.Type())) {
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
H
hong 已提交
1615
    VLOG(10) << "Inplace activation of Op: " << ctx.Type();
1616 1617
    *Out = *ddX;
  }
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

Z
Zhong Hui 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
template <typename T>
struct AbsGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "AbsGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "AbsGradGrad"));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "AbsGradGrad"));
      ddout.device(*d) = ddx * x.sign();
    }
  }
1667
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1668 1669
};

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    if (ddOut) {
Z
Zeng Jinle 已提交
1682
      auto* d = dev.eigen_device();
1683 1684
      auto ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddX, "Input", "DDX", "LeakyReluGradGrad"));
1685 1686
      auto x = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(X, "Input", "X", "LeakyReluGradGrad"));
1687 1688
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DOut", "LeakyReluGradGrad"));
1689 1690 1691 1692 1693
      ddout.device(*d) =
          ddx *
          ((x > static_cast<T>(0)).template cast<T>() +
           static_cast<T>(alpha) * (x <= static_cast<T>(0)).template cast<T>())
              .template cast<T>();
1694 1695
    }
  }
1696
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1697 1698
};

D
Double_V 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
template <typename T>
struct ELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1710 1711 1712 1713
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "ELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ELUGradGrad"));
D
Double_V 已提交
1714 1715

    if (dX) {
1716 1717 1718 1719
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "ELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "ELUGradGrad"));
D
Double_V 已提交
1720
      dx.device(*d) = ddx * dout * static_cast<T>(alpha) * x.exp() *
1721
                      (x <= static_cast<T>(0)).template cast<T>();
D
Double_V 已提交
1722 1723 1724
    }

    if (ddOut) {
1725 1726
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "ELUGradGrad"));
D
Double_V 已提交
1727 1728 1729 1730 1731 1732 1733
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          static_cast<T>(alpha) * x.exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
1734
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
D
Double_V 已提交
1735 1736
};

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
template <typename T>
struct CELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "CELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "CELUGradGrad"));

    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "CELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "CELUGradGrad"));
      dx.device(*d) = ddx * dout / static_cast<T>(alpha) *
                      (x / static_cast<T>(alpha)).exp() *
                      (x <= static_cast<T>(0)).template cast<T>();
    }

    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "CELUGradGrad"));
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          (x / static_cast<T>(alpha)).exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
1773
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1774 1775
};

L
lvmengsi 已提交
1776 1777 1778 1779 1780 1781 1782
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1783 1784 1785 1786
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "SqrtGradGrad"));
1787 1788
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1789
    if (dOut) {
1790 1791 1792 1793
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SqrtGradGrad"));
L
lvmengsi 已提交
1794 1795
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1796
    if (ddOut) {
1797 1798
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SqrtGradGrad"));
1799 1800
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1801
  }
1802 1803 1804
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
L
lvmengsi 已提交
1805 1806
};

W
whs 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
template <typename T>
struct RsqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "RsqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "RsqrtGradGrad"));

    // rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * dx * ddx
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "RsqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "RsqrtGradGrad"));
      dout.device(*d) = (static_cast<T>(3.0) / out) * dx * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "RsqrtGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(-0.5) * out * out * out;
    }
  }
1833 1834 1835
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
W
whs 已提交
1836 1837
};

1838 1839 1840 1841 1842 1843 1844
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1845 1846 1847 1848
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SquareGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "SquareGradGrad"));
1849 1850
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1851
    if (dX) {
1852 1853 1854 1855
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SquareGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SquareGradGrad"));
1856 1857
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1858
    if (ddOut) {
1859 1860
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
1861 1862
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1863
  }
1864
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1877 1878 1879 1880
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
1881 1882 1883 1884
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
1885 1886 1887 1888 1889
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
1890 1891 1892

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
1893 1894
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::NotFound(
1895
                 "Cannot get input Variable Out, variable name = %s",
1896
                 ctx.InputName("X")));
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
template <typename DeviceContext, typename Functor>
class SigmoidDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;
    // extract ddx(input) and out(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    // set output ddout
    ddOut = ctx.Output<framework::Tensor>("DDOut");
    // extract dOut(intput)
    dOut = ctx.Input<framework::Tensor>("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
// Out, DDX, DOut, D_DDOut, D_DOut_New   // input
// D_OutNew, D_DOut, D_DDx               // output
template <typename DeviceContext, typename Functor>
class SigmoidTripleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
template <typename DeviceContext, typename Functor>
class TanhDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;

    // extract ddx(input) and out(input)
    auto ddx_var = ctx.InputVar("DDX");
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable ddx, variable name = %s",
                     ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable out, variable name = %s",
                     ctx.InputName("Out")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");

    // set output ddout
    auto ddout_var = ctx.OutputVar("DDOut");
    if (ddout_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }

    // extract dOut(intput)
    auto dout_var = ctx.InputVar("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dout_var, platform::errors::NotFound(
                      "Cannot get input Variable dout_var, variable name = %s",
                      ctx.InputName("DOut")));
    dOut = ctx.Input<framework::Tensor>("DOut");

    // set output dout_new
    auto dout_new_var = ctx.OutputVar("DOutNew");
    if (dout_new_var) {
      dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    }

    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

template <typename DeviceContext, typename Functor>
class TanhTripeGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
2128 2129
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
2130 2131 2132 2133 2134 2135 2136 2137

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

2138 2139 2140 2141
template <typename DeviceContext, typename Functor>
class LogDoubleGradKernel
    : public SquareDoubleGradKernel<DeviceContext, Functor> {};

D
Double_V 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
template <typename DeviceContext, typename Functor>
class ELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
2169
template <typename DeviceContext, typename Functor>
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
class CELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

template <typename DeviceContext, typename Functor>
L
lvmengsi 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
2210 2211 2212 2213
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
L
lvmengsi 已提交
2214 2215 2216 2217
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
2218 2219 2220 2221
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));
L
lvmengsi 已提交
2222 2223 2224

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
2225 2226 2227 2228
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
L
lvmengsi 已提交
2229 2230 2231 2232 2233 2234 2235 2236
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
2237 2238 2239 2240
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
L
lvmengsi 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

W
whs 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename DeviceContext, typename Functor>
class RsqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

2327 2328 2329 2330
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Pow"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Pow"));
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
2346 2347
        framework::TensorCopySync(*factor_tensor, platform::CPUPlace(),
                                  &cpu_factor_tensor);
2348 2349 2350 2351
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2352 2353 2354 2355 2356
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
2377 2378 2379 2380 2381 2382 2383 2384
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "PowGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "PowGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "X@GRAD", "PowGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "PowGrad"));
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
2401 2402
        framework::TensorCopySync(*factor_tensor, platform::CPUPlace(),
                                  &cpu_factor_tensor);
2403 2404 2405 2406
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
2407 2408 2409 2410 2411
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
2412 2413 2414 2415 2416 2417 2418
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
2419

W
wangzhen38 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
template <typename DeviceContext, typename T>
class LogitKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out = context.Output<framework::Tensor>("Out");
    auto* in = context.Input<framework::Tensor>("X");
    auto eps = context.Attr<float>("eps");
    out->mutable_data<T>(in->place());

    auto eigen_out = framework::EigenVector<T>::Flatten(*out);
    auto eigen_in = framework::EigenVector<T>::Flatten(*in);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto eigen_p = framework::EigenVector<T>::Flatten(*out);

    LogitFunctor<T> functor;
    functor(place, eigen_in, eigen_out, eigen_p, eps);
  }
};

template <typename DeviceContext, typename T>
class LogitGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* dout =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto eps = context.Attr<float>("eps");
    dx->mutable_data<T>(dout->place());

    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_dout = framework::EigenVector<T>::Flatten(*dout);
    auto eigen_dx = framework::EigenVector<T>::Flatten(*dx);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto eigen_p = framework::EigenVector<T>::Flatten(*x);

    LogitGradFunctor<T> functor;
    functor(place, eigen_x, eigen_dout, eigen_dx, eigen_p, eps);
  }
};

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
template <typename T>
struct LogGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "LogGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "LogGradGrad"));
    // ddout = ddx / x; dx = -(dout / x) * (ddx / x)
    // calculate dx first, so ddout can inplace ddx
    if (dX) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "LogGradGrad"));
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "LogGradGrad"));
      dx.device(*d) = dout * static_cast<T>(-1) * ddx / (x * x);
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "LogGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(1) / x;
    }
  }

2490
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
2491 2492
};

Q
qijun 已提交
2493 2494
}  // namespace operators
}  // namespace paddle
2495

2496
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
M
minghaoBD 已提交
2497
  __macro(silu, Silu, SiluFunctor, SiluGradFunctor);                          \
2498 2499 2500 2501 2502 2503
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
2504
  __macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);                      \
J
joejiong 已提交
2505
  __macro(log2, Log2, Log2Functor, Log2GradFunctor);                          \
J
joejiong 已提交
2506
  __macro(log10, Log10, Log10Functor, Log10GradFunctor);                      \
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
H
huangjun12 已提交
2519
          ThresholdedReluGradFunctor);                                        \
2520
  __macro(mish, Mish, MishFunctor, MishGradFunctor);                          \
H
huangjun12 已提交
2521
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);