test_complex_abs.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import unittest
import numpy as np

import paddle
import paddle.fluid.dygraph as dg
from op_test import OpTest


class TestComplexAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


class TestComplexAbsOpZeroValues(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = np.zeros(self.shape).astype(self.dtype) + 1J * np.zeros(
            self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = np.zeros(self.shape, self.dtype)

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


class TestAbs(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_all_positive(self):
        for dtype in self._dtypes:
            x = 1 + 10 * np.random.random([13, 3, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    y = paddle.abs(paddle.to_tensor(x))
                    self.assertTrue(np.allclose(np.abs(x), y.numpy()))


class TestRealAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = 1 + np.random.random(self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


if __name__ == '__main__':
    unittest.main()