test_gather_nd_op.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
21
import paddle
22 23 24


class TestGatherNdOpWithEmptyIndex(OpTest):
25
    #Index has empty element, which means copy entire tensor
26 27 28

    def setUp(self):
        self.op_type = "gather_nd"
29
        xnp = np.random.random((5, 20)).astype("float64")
30 31 32 33 34 35 36 37 38 39 40 41
        self.inputs = {'X': xnp, 'Index': np.array([[], []]).astype("int32")}
        self.outputs = {
            'Out': np.vstack((xnp[np.newaxis, :], xnp[np.newaxis, :]))
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


42 43 44 45 46 47 48 49 50 51 52 53 54 55
class TestGatherNdOpWithIndex1(OpTest):
    def setUp(self):
        self.op_type = "gather_nd"
        xnp = np.random.random((5, 20)).astype("float64")
        self.inputs = {'X': xnp, 'Index': np.array([1]).astype("int32")}
        self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


56
class TestGatherNdOpWithLowIndex(OpTest):
57
    #Index has low rank, X has high rank
58 59 60

    def setUp(self):
        self.op_type = "gather_nd"
Z
zhupengyang 已提交
61
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
62 63 64 65 66 67 68 69 70 71 72 73 74
        index = np.array([[1], [2]]).astype("int64")

        self.inputs = {'X': xnp, 'Index': index}

        self.outputs = {'Out': xnp[tuple(index.T)]}  #[[14, 25, 1], [76, 22, 3]]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestGatherNdOpIndex1(OpTest):
    #Index has low rank, X has high rank

    def setUp(self):
        self.op_type = "gather_nd"
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
        index = np.array([1, 2]).astype("int64")

        self.inputs = {'X': xnp, 'Index': index}

        self.outputs = {'Out': xnp[tuple(index.T)]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


94
class TestGatherNdOpWithSameIndexAsX(OpTest):
95
    #Index has same rank as X's rank
96 97 98

    def setUp(self):
        self.op_type = "gather_nd"
Z
zhupengyang 已提交
99
        xnp = np.random.uniform(0, 100, (10, 10)).astype("float64")
100 101 102 103 104 105 106 107 108 109 110 111 112
        index = np.array([[1, 1], [2, 1]]).astype("int64")

        self.inputs = {'X': xnp, 'Index': index}
        self.outputs = {'Out': xnp[tuple(index.T)]}  #[25, 22]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestGatherNdOpWithHighRankSame(OpTest):
113
    #Both Index and X have high rank, and Rank(Index) = Rank(X)
114 115 116

    def setUp(self):
        self.op_type = "gather_nd"
S
ShenLiang 已提交
117
        shape = (5, 2, 3, 1, 10)
118
        xnp = np.random.rand(*shape).astype("float64")
S
ShenLiang 已提交
119
        index = np.vstack([np.random.randint(0, s, size=2) for s in shape]).T
120 121 122 123 124 125 126 127 128 129 130 131

        self.inputs = {'X': xnp, 'Index': index.astype("int32")}
        self.outputs = {'Out': xnp[tuple(index.T)]}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestGatherNdOpWithHighRankDiff(OpTest):
132
    #Both Index and X have high rank, and Rank(Index) < Rank(X)
133 134 135

    def setUp(self):
        self.op_type = "gather_nd"
S
ShenLiang 已提交
136
        shape = (2, 3, 4, 1, 10)
137
        xnp = np.random.rand(*shape).astype("float64")
S
ShenLiang 已提交
138 139
        index = np.vstack([np.random.randint(0, s, size=200) for s in shape]).T
        index_re = index.reshape([20, 5, 2, 5])
140 141

        self.inputs = {'X': xnp, 'Index': index_re.astype("int32")}
S
ShenLiang 已提交
142
        self.outputs = {'Out': xnp[tuple(index.T)].reshape([20, 5, 2])}
143 144 145 146 147 148 149 150 151

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


#Test Python API
152
class TestGatherNdOpAPI(unittest.TestCase):
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def test_case1(self):
        x1 = fluid.layers.data(
            name='x1', shape=[30, 40, 50, 60], dtype='float32')
        index1 = fluid.layers.data(name='index1', shape=[2, 4], dtype='int32')
        output1 = fluid.layers.gather_nd(x1, index1)

    def test_case2(self):
        x2 = fluid.layers.data(name='x2', shape=[30, 40, 50], dtype='float32')
        index2 = fluid.layers.data(name='index2', shape=[2, 2], dtype='int64')
        output2 = fluid.layers.gather_nd(x2, index2)

    def test_case3(self):
        x3 = fluid.layers.data(name='x3', shape=[3, 4, 5], dtype='float32')
        index3 = fluid.layers.data(name='index3', shape=[2, 1], dtype='int32')
        output3 = fluid.layers.gather_nd(x3, index3, name="gather_nd_layer")


#Test Raise Index Error
171
class TestGatherNdOpRaise(unittest.TestCase):
172 173 174 175 176 177 178 179 180 181
    def test_check_raise(self):
        def check_raise_is_test():
            try:
                x = fluid.layers.data(
                    name='x', shape=[3, 4, 5], dtype='float32')
                index = fluid.layers.data(
                    name='index', shape=[2, 10], dtype='int32')
                output = fluid.layers.gather_nd(x, index)
            except Exception as e:
                t = \
182
                "Input(Index).shape[-1] should be no greater than Input(X).rank"
183 184 185 186 187 188
                if t in str(e):
                    raise IndexError

        self.assertRaises(IndexError, check_raise_is_test)


189 190 191 192 193 194
class TestGatherNdError(unittest.TestCase):
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):

            shape = [8, 9, 6]
195 196 197
            x = paddle.fluid.data(shape=shape, dtype='float32', name='x')
            index = paddle.fluid.data(shape=shape, dtype='bool', name='index')
            index_float = paddle.fluid.data(
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                shape=shape, dtype='float32', name='index_float')
            np_x = np.random.random(shape).astype('float32')
            np_index = np.array(np.random.randint(2, size=shape, dtype=bool))

            def test_x_type():
                paddle.gather_nd(np_x, index)

            self.assertRaises(TypeError, test_x_type)

            def test_index_type():
                paddle.gather_nd(x, np_index)

            self.assertRaises(TypeError, test_index_type)

            def test_index_dtype():
                paddle.gather_nd(x, index_float)

            self.assertRaises(TypeError, test_index_dtype)


class TestGatherNdAPI2(unittest.TestCase):
    def test_static(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64')
            index = fluid.layers.data('index', shape=[-1, 1], dtype='int32')
            out = paddle.gather_nd(data1, index)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input = np.array([[1, 2], [3, 4], [5, 6]])
            index_1 = np.array([[1]])
            result, = exe.run(feed={"data1": input,
                                    "index": index_1},
                              fetch_list=[out])
            expected_output = np.array([[3, 4]])
        self.assertTrue(np.allclose(result, expected_output))

    def test_imperative(self):
        paddle.disable_static()
        input_1 = np.array([[1, 2], [3, 4], [5, 6]])
        index_1 = np.array([[1]])
        input = fluid.dygraph.to_variable(input_1)
        index = fluid.dygraph.to_variable(index_1)
        output = paddle.fluid.layers.gather(input, index)
        output_np = output.numpy()
        expected_output = np.array([3, 4])
        self.assertTrue(np.allclose(output_np, expected_output))
        paddle.enable_static()


247 248
if __name__ == "__main__":
    unittest.main()