lookup_table_v2_op.cu 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_v2_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
__global__ void LookupTableV2(T *output, const T *table, const int64_t *ids,
                              const int64_t N, const int64_t K, const int64_t D,
                              const int64_t padding_idx) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    PADDLE_ENFORCE(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ENFORCE(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    T *out = output + idy * D;
    const T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
    idy += BlockDimY * GridDimX;
  }
}

template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
__global__ void LookupTableV2Grad(T *table, const T *output, const int64_t *ids,
                                  const int64_t N, const int64_t K,
                                  const int64_t D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * GridDimX;

  while (idy < K) {
    int64_t id = ids[idy];
    PADDLE_ENFORCE(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ENFORCE(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    const T *out = output + idy * D;
    T *tab = table + id * D;
    for (int i = idx; i < D; i += BlockDimX) {
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
    }
    idy += BlockDimY * GridDimX;
  }
}

template <typename T>
class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

H
hong 已提交
97 98
    auto id_name = context.InputNames("Ids").front();
    auto out_name = context.OutputNames("Out").front();
99 100 101 102 103 104 105 106 107

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

    auto *ids = ids_t->data<int64_t>();
    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

108 109
    dim3 threads(256, 4);
    dim3 grids(80, 1);
110 111 112

    if (padding_idx == -1)
      LookupTableV2<
113
          T, 256, 4, 80,
114 115 116 117
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
    else
      LookupTableV2<
118
          T, 256, 4, 80,
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
  }
};

template <typename T>
class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
    bool is_sparse = context.Attr<bool>("is_sparse");

    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto *ids_data = ids->data<int64_t>();
      int64_t ids_num = ids->numel();

      auto stream = dev_ctx.stream();
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_num);
147
      auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace());
148 149 150 151 152 153 154 155 156 157 158 159 160

      // TODO(yuyang18): Strange code here.
      memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                   gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
      d_table->set_rows(new_rows);

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
      auto d_output_dims = d_output->dims();
161 162 163 164 165 166 167 168
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        "ShapeError: The shape of lookup_table@Grad and "
                        "output@Grad should be same. "
                        "But received lookup_table@Grad's shape = [%s], "
                        "output@Grad's shape = [%s].",
                        d_table_value->dims(), d_output_dims_2d);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
                   d_output->numel() * sizeof(T), stream);

    } else {
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
      const int64_t *ids = ids_t->data<int64_t>();
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

      dim3 threads(128, 8);
      dim3 grids(8, 1);
      LookupTableV2Grad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
          d_table, d_output, ids, N, K, D);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(lookup_table_v2, ops::LookupTableV2CUDAKernel<float>,
                        ops::LookupTableV2CUDAKernel<double>,
                        ops::LookupTableV2CUDAKernel<plat::float16>);
REGISTER_OP_CUDA_KERNEL(lookup_table_v2_grad,
                        ops::LookupTableV2GradCUDAKernel<float>,
                        ops::LookupTableV2GradCUDAKernel<double>,
                        ops::LookupTableV2GradCUDAKernel<plat::float16>);