optimizer.py 21.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Q
Qiao Longfei 已提交
38 39
    def __init__(self, learning_rate, global_step=None, regularization=None):
        assert learning_rate is not None
40
        self._global_step = global_step
D
dzhwinter 已提交
41
        self.regularization = regularization
Q
Qiao Longfei 已提交
42
        self._global_learning_rate = learning_rate
43 44 45 46 47
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
48
        self.helper = None
Q
Qiao Longfei 已提交
49

Q
Qiao Longfei 已提交
50 51 52
    def _create_global_learning_rate(self):
        if isinstance(self._global_learning_rate, float):
            self._global_learning_rate = layers.create_global_var(
Y
Yu Yang 已提交
53
                name=unique_name.generate("learning_rate"),
Q
Qiao Longfei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
                shape=[1],
                value=float(self._global_learning_rate),
                dtype='float32',
                persistable=True)

        if not isinstance(self._global_learning_rate, framework.Variable):
            raise ValueError("learning rate should be a Variable, "
                             "actual type is %s",
                             type(self._global_learning_rate))

    @property
    def global_learning_rate(self):
        """
        get global decayed learning rate
        :return:
        """
        return self._global_learning_rate

Q
Qiao Longfei 已提交
72 73 74 75 76
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

77 78 79 80
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
Qiao Longfei 已提交
81
        return self._global_learning_rate * param_lr
82 83 84 85 86 87 88

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
89
        """
90 91
        pass

92 93 94 95 96 97 98 99 100 101 102 103 104
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
105
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
106 107 108 109 110 111 112 113 114 115 116
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
117
            raise Exception("Accumulator {} already exists for parameter {}".
118
                            format(name, param.name))
Q
Qiao Longfei 已提交
119 120 121

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
122
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
123
            persistable=True,
F
fengjiayi 已提交
124
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
125 126 127
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
128
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
129
        self._accumulators[name][param.name] = var
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
167 168 169
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
170
                                 startup_program=None):
Q
Qiao Longfei 已提交
171 172 173 174 175 176 177
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
178 179 180 181
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
182
          :param startup_program:
Q
Qiao Longfei 已提交
183
        """
184 185 186 187 188
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
189
        # for parameters and extend _finish_update method to add custom ops.
190 191

        # Create any accumulators
Q
Qiao Longfei 已提交
192
        program = loss.block.program
193
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
194 195
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
196 197 198
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
199
            self._create_global_learning_rate()
200 201 202 203 204 205 206 207 208 209 210

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
211
            self._finish_update(loss.block)
212 213

            if self._global_step is not None:
Y
Yancey1989 已提交
214 215 216
                self._increment_global_step(loss.block)
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
217

Q
Qiao Longfei 已提交
218 219
    def minimize(self,
                 loss,
220
                 startup_program=None,
Q
Qiao Longfei 已提交
221 222
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
223 224
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
225
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
226 227
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
228
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
229
                                       [error_clip_callback])
Y
Yu Yang 已提交
230 231 232

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
233
        # Add regularization if any
D
dzhwinter 已提交
234 235
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
236

Q
Qiao Longfei 已提交
237
        optimize_ops = self.create_optimization_pass(params_grads, loss,
238
                                                     startup_program)
T
typhoonzero 已提交
239
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
240 241 242 243 244 245


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
246
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
247
        assert learning_rate is not None
Q
Qiao Longfei 已提交
248 249
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
250 251
        self.type = "sgd"

252 253
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
254

Q
Qiao Longfei 已提交
255 256 257 258 259 260
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
261
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
262
            },
263
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
264 265

        return sgd_op
266 267 268 269 270 271 272


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
273
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
274 275
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
276 277
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
278 279
        self.type = "momentum"
        self._momentum = momentum
280
        self._use_nesterov = bool(use_nesterov)
281 282 283 284 285

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
286
            self._add_accumulator(self._velocity_acc_str, p)
287 288 289 290 291 292 293 294 295 296 297 298 299

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
300
                "LearningRate": self._create_param_lr(param_and_grad)
301 302 303 304 305
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
306
            attrs={"mu": self._momentum,
307
                   "use_nesterov": self._use_nesterov})
308 309

        return momentum_op
310 311 312 313 314 315 316


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
317
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
318 319
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
320 321
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
322 323 324 325 326 327 328
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
329
            self._add_accumulator(self._moment_acc_str, p)
330 331 332 333 334 335 336

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

337
        # Create the adagrad optimizer op
338 339 340 341 342 343
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
344
                "LearningRate": self._create_param_lr(param_and_grad)
345 346 347 348 349 350
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
351 352 353 354 355 356 357 358 359 360 361 362


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
363
                 epsilon=1e-8,
D
dzhwinter 已提交
364
                 **kwargs):
365 366 367 368
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
369 370
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
371 372 373 374 375 376 377 378
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
379
        main_block = block.program.global_block()
380 381
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
382
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
383
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
384 385 386 387 388
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
389
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
390 391

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
392
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
393 394 395 396 397 398
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
399
            self._beta2_pow_acc, initializer=Constant(self._beta2))
400 401 402

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
403 404
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
405 406 407 408 409 410 411 412

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
413
        # create the adam optimize op
414 415 416 417 418
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
419
                "LearningRate": self._create_param_lr(param_and_grad),
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
442 443
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
444 445 446 447 448
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
449
        scale_beta2 = main_block.append_op(
450 451 452 453 454 455
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
456 457 458 459 460 461 462 463 464 465 466 467


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
468
                 epsilon=1e-8,
D
dzhwinter 已提交
469
                 **kwargs):
470 471 472 473
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
474 475
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
476 477 478 479 480 481 482 483
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
484
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
485
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
486 487 488 489 490
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
491
            self._beta1_pow_acc, initializer=Constant(self._beta1))
492 493 494

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
495 496
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
497 498 499 500 501 502 503 504 505 506 507 508 509

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
510
                "LearningRate": self._create_param_lr(param_and_grad),
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
532 533
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
534 535 536 537 538 539
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
540 541 542 543 544 545 546


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
547
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
548 549 550 551
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
552 553
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer