saved_tensors_hooks.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import core

__all__ = []


class saved_tensors_hooks():
    """
    Dynamic graph, registers a pair of pack / unpack hooks for saved tensors.
23

24 25
    Parameters:
        pack_hook (function): The pack hook will be called every time the forward
26
            operation inputs/outputs tensors need be saved for backward. Then you
27 28 29 30 31 32 33 34 35 36 37 38
            can save it to CPU or Disk. The input of `pack_hook` is a tensor need
            be saved. The output of `pack_hook` is then stored information instead
            of the original tensor. `pack_hook` will also be called while any
            tensor need be saved by `PyLayerContext.save_for_backward`. If a tensor
            saved for backward is no need buffer, `pack_hook` will not be called.
            Only the thensor saved for backward is LoDTensor, `pack_hook` will be
            called.
        unpack_hook (function): The unpack hook will be called every time the
            backward need use the saved inputs/outputs tensors. Then you can reload
            the tensor and return it to paddle framework. The input of `unpack_hook`
            is the information returned by `pack_hook`. The output of `unpack_hook`
            is a tensor reloaded by the information, and the tensor mast has the same
39
            content as the original tensor passed as input to the corresponding
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            `pack_hook`.

    Returns:
            None

    Examples:
        .. code-block:: python

        # Example1
        import paddle

        def pack_hook(x):
            print("Packing", x)
            return x.numpy()

        def unpack_hook(x):
            print("UnPacking", x)
            return paddle.to_tensor(x)

        a = paddle.ones([3,3])
        b = paddle.ones([3,3]) * 2
        a.stop_gradient = False
        b.stop_gradient = False
        with paddle.autograd.saved_tensors_hooks(pack_hook, unpack_hook):
            y = paddle.multiply(a, b)
        y.sum().backward()

        # Example2
        import paddle
        from paddle.autograd import PyLayer

        class cus_multiply(PyLayer):
            @staticmethod
            def forward(ctx, a, b):
                y = paddle.multiply(a, b)
                ctx.save_for_backward(a, b)
                return y

            @staticmethod
            def backward(ctx, dy):
                a,b = ctx.saved_tensor()
                grad_a = dy * a
                grad_b = dy * b
                return grad_a, grad_b

        def pack_hook(x):
            print("Packing", x)
            return x.numpy()

        def unpack_hook(x):
            print("UnPacking", x)
            return paddle.to_tensor(x)

        a = paddle.ones([3,3])
        b = paddle.ones([3,3]) * 2
        a.stop_gradient = False
        b.stop_gradient = False
        with paddle.autograd.saved_tensors_hooks(pack_hook, unpack_hook):
            y = cus_multiply.apply(a, b)
        y.sum().backward()
    """

    def __init__(self, pack_hook, unpack_hook):
        self.pack_hook = pack_hook
        self.unpack_hook = unpack_hook

    def __enter__(self):
        core.eager.register_saved_tensors_hooks(self.pack_hook,
                                                self.unpack_hook)

    def __exit__(self, *args):
        core.eager.reset_saved_tensors_hooks()