test_device_guard.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
from op_test import OpTest

import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import warnings


def execute(main_program, startup_program):
    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(0)
    else:
        place = core.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_program)
    exe.run(main_program)


36 37 38 39 40 41 42 43
def get_vaild_warning_num(warning, w):
    num = 0
    for i in range(len(w)):
        if warning in str(w[i].message):
            num += 1
    return num


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
class TestDeviceGuard(unittest.TestCase):
    def test_device_guard(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data1 = fluid.layers.fill_constant(
                shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(
                shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)
            with fluid.device_guard("cpu"):
                shape = fluid.layers.slice(
                    shape, axes=[0], starts=[0], ends=[4])
                with fluid.device_guard("gpu"):
                    out = fluid.layers.crop_tensor(data1, shape=shape)
        # check if the device attr is set correctly
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'slice':
                self.assertEqual(op.desc.attr(device_attr_name), "cpu")
            if op.type == 'crop_tensor':
                self.assertEqual(op.desc.attr(device_attr_name), "gpu")

        execute(main_program, startup_program)

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    def test_device_guard_with_id(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data1 = fluid.layers.fill_constant(
                shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(
                shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)
            with fluid.device_guard("cpu"):
                shape = fluid.layers.slice(
                    shape, axes=[0], starts=[0], ends=[4])
                with fluid.device_guard("gpu:1"):
                    out = fluid.layers.crop_tensor(data1, shape=shape)
        # check if the device attr is set correctly
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'slice':
                self.assertEqual(op.desc.attr(device_attr_name), "cpu")
            if op.type == 'crop_tensor':
                self.assertEqual(op.desc.attr(device_attr_name), "gpu:1")

        execute(main_program, startup_program)

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def test_cpu_only_op(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            x = fluid.layers.fill_constant(
                shape=[2, 255, 13, 13], value=0.3, dtype='float32')
            gt_box = fluid.layers.fill_constant(
                shape=[2, 6, 4], value=0.5, dtype='float32')
            gt_label = fluid.layers.fill_constant(
                shape=[2, 6], value=1.0, dtype='int32')
            gt_score = fluid.layers.fill_constant(
                shape=[2, 6], value=0.5, dtype='float32')
            anchors = [
                10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
                198, 373, 326
            ]
            anchor_mask = [0, 1, 2]
            with fluid.device_guard("gpu"):
                # yolov3_loss only has cpu kernel, so its cpu kernel will be executed
                loss = fluid.layers.yolov3_loss(
                    x=x,
                    gt_box=gt_box,
                    gt_label=gt_label,
                    gt_score=gt_score,
                    anchors=anchors,
                    anchor_mask=anchor_mask,
                    class_num=80,
                    ignore_thresh=0.7,
                    downsample_ratio=32)

        execute(main_program, startup_program)

    def test_without_kernel_op(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(
                shape=[1], dtype='int64', value=10)
            cond = fluid.layers.less_than(x=i, y=loop_len)

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                with fluid.device_guard("cpu"):
                    while_op = fluid.layers.While(cond=cond)
                    with while_op.block():
                        i = fluid.layers.increment(x=i, value=1, in_place=True)
                        fluid.layers.less_than(x=i, y=loop_len, cond=cond)

144 145 146 147
        warning = "The Op(while) is not support to set device."
        warning_num = get_vaild_warning_num(warning, w)
        assert warning_num == 1

148 149 150 151 152 153 154 155 156 157 158 159 160 161
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'while':
                self.assertEqual(op.desc.attr(device_attr_name), "")

        execute(main_program, startup_program)

    def test_error(self):
        def device_attr():
            with fluid.device_guard("cpu1"):
                out = fluid.layers.fill_constant(
                    shape=[1], value=0.2, dtype='float32')

162 163 164 165 166
        def device_attr2():
            with fluid.device_guard("cpu:1"):
                out = fluid.layers.fill_constant(
                    shape=[1], value=0.2, dtype='float32')

167
        self.assertRaises(ValueError, device_attr)
168
        self.assertRaises(ValueError, device_attr2)
169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def test_warning(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                with fluid.device_guard("gpu"):
                    x = fluid.layers.fill_constant(
                        shape=[1], value=3.0, dtype='float32', force_cpu=True)
                    y = fluid.layers.fill_constant(
                        shape=[1], value=4.0, dtype='float32')
                    result = fluid.layers.less_than(x=x, y=y, force_cpu=False)

183 184 185 186
        warning = "\'device_guard\' has higher priority when they are used at the same time."
        warning_num = get_vaild_warning_num(warning, w)
        assert warning_num == 2

187 188 189 190 191
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            self.assertEqual(op.desc.attr(device_attr_name), "gpu")

192 193
    # check if op_descs have op_device attr
    def test_op_descs_device_attr(self):
194 195 196 197
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data1 = fluid.layers.data(name="data_1", shape=[2], dtype="float32")
198
            data2 = fluid.layers.data(name="data_2", shape=[2], dtype="float32")
199 200
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            fc1 = fluid.layers.fc(input=data1, size=10)
201
            fc2 = fluid.layers.fc(input=fc1, size=10)
202 203
            with fluid.device_guard("gpu"):
                out = fluid.layers.softmax_with_cross_entropy(
204
                    logits=fc1 + fc2, label=label)
205 206 207 208 209 210 211 212
                loss = fluid.layers.mean(out)
                opt = fluid.optimizer.SGDOptimizer(0.1)
                opt.minimize(loss)

        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            self.assertEqual(True, op.desc.has_attr(device_attr_name))
213 214
            # fill_constant(backward op) is append to mean op, which should have
            # the same op_device value as mean op
215 216 217
            if op.desc == 'fill_constant':
                self.assertEqual(op.desc.attr(device_attr_name), "gpu")

218 219 220

if __name__ == '__main__':
    unittest.main()