vol2col.cu 14.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15 16
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/vol2col.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduoZH 已提交
19 20 21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
26 27 28 29 30
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
31 32 33 34 35 36
                        int output_width, T* data_col,
                        const DataLayout data_layout) {
  int input_channels =
      num_kernels / output_detph / output_height / output_width;
  int channels_col =
      input_channels * filter_depth * filter_height * filter_width;
C
chengduoZH 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
54 55 56
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
57
          int vol_idx;
58
          if (data_layout != DataLayout::kNHWC) {
59 60 61 62 63
            vol_idx = ((channel_in * depth + d) * height + h) * width + w;
          } else {
            vol_idx =
                ((d * height + h) * width + w) * input_channels + channel_in;
          }
C
chengduoZH 已提交
64 65
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
66
                          ? data_vol[vol_idx]
C
chengduoZH 已提交
67 68 69 70 71 72 73 74 75
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
76 77 78 79
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
80 81 82 83 84
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
85
class Vol2ColFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
86
 public:
Q
QI JUN 已提交
87
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
88 89 90
                  const framework::Tensor& vol,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
91 92
                  const std::vector<int>& paddings, framework::Tensor* col,
                  const DataLayout data_layout) const {
93 94 95 96 97 98 99 100
    PADDLE_ENFORCE_EQ(vol.dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of  vol should be 4, but received %d.",
                          vol.dims().size()));
    PADDLE_ENFORCE_EQ(col->dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col should be 7, but received %d.",
                          col->dims().size()));
C
chengduoZH 已提交
101

102
    int input_channels =
103
        (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
104
    int input_depth =
105
        (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
106
    int input_height =
107
        (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
108
    int input_width =
109
        (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
C
chengduoZH 已提交
110 111 112 113 114 115
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
C
chengduoZH 已提交
116

L
liym27 已提交
117 118 119 120 121 122 123
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
151

C
chengduoZH 已提交
152 153 154 155 156
    int num_outputs =
        input_channels * output_depth * output_height * output_width;

    const int threads = 1024;
    const int blocks = (num_outputs + 1024 - 1) / 1024;
Q
QI JUN 已提交
157
    vol2col<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
158
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
159
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
160
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
161 162
        pad_w_left, output_depth, output_height, output_width, col->data<T>(),
        data_layout);
C
chengduoZH 已提交
163 164 165 166 167
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
168 169 170 171 172
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
173 174
                        int output_width, T* data_vol,
                        const DataLayout data_layout) {
C
chengduoZH 已提交
175 176 177 178
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

179
  int input_channels = num_kernels / depth / height / width;
C
chengduoZH 已提交
180 181 182
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
183
    int w = (data_layout != DataLayout::kNHWC
184 185
                 ? index % width + padding_width
                 : (index / input_channels) % width + padding_width);
186
    int h = (data_layout != DataLayout::kNHWC
187 188
                 ? (index / width) % height + padding_height
                 : (index / input_channels / width) % height + padding_height);
189
    int d = (data_layout != DataLayout::kNHWC
190 191
                 ? (index / width / height) % depth + padding_depth
                 : index / input_channels / width / height + padding_depth);
192
    int c = (data_layout != DataLayout::kNHWC ? index / width / height / depth
193
                                              : index % input_channels);
C
chengduoZH 已提交
194

C
chengduoZH 已提交
195 196
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
197
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
198 199
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
200
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
201 202
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
203
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
204 205 206 207 208
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
209 210 211 212 213 214 215 216 217 218 219 220
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
221 222 223
                   w_off)));
            data_col_index =
                ((data_col_index * output_detph + d_col) * output_height +
C
chengduoZH 已提交
224 225 226 227 228
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
229 230 231 232 233 234 235 236
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
237 238 239 240
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
241 242 243 244 245
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
246
class Col2VolFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
247
 public:
Q
QI JUN 已提交
248
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
249 250 251
                  const framework::Tensor& col,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
252 253
                  const std::vector<int>& paddings, framework::Tensor* vol,
                  const DataLayout data_layout) const {
254 255 256 257 258 259 260 261
    PADDLE_ENFORCE_EQ(vol->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of vol  should be 4, but received %d.",
                          vol->dims().size()));
    PADDLE_ENFORCE_EQ(col.dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col  should be 7, but received %d.",
                          col.dims().size()));
C
chengduoZH 已提交
262

263
    int input_channels =
264
        (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
265
    int input_depth =
266
        (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
267
    int input_height =
268
        (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
269
    int input_width =
270
        (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
C
chengduoZH 已提交
271 272 273 274 275 276 277
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

L
liym27 已提交
278 279 280 281 282 283 284 285
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

286 287 288 289
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
290 291 292 293 294
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
295 296 297 298
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
299 300 301 302 303
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
304 305 306 307
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
308 309 310 311 312
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
313

C
chengduoZH 已提交
314 315 316 317 318
    int num_kernels = input_channels * input_depth * input_height * input_width;

    const int threads = 1024;
    const int blocks = (num_kernels + 1024 - 1) / 1024;

Q
QI JUN 已提交
319
    col2vol<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
320
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
321
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
322
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
323 324
        pad_w_left, output_depth, output_height, output_width, vol->data<T>(),
        data_layout);
C
chengduoZH 已提交
325 326 327
  }
};

Q
QI JUN 已提交
328 329 330 331
template class Vol2ColFunctor<platform::CUDADeviceContext, float>;
template class Vol2ColFunctor<platform::CUDADeviceContext, double>;
template class Col2VolFunctor<platform::CUDADeviceContext, float>;
template class Col2VolFunctor<platform::CUDADeviceContext, double>;
C
chengduoZH 已提交
332 333 334 335

}  // namespace math
}  // namespace operators
}  // namespace paddle