pool2d_op.cc 9.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20
namespace paddle {
namespace framework {
class Scope;
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
59 60 61 62 63
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
64 65
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
66
    VLOG(4)
N
nhzlx 已提交
67 68
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
69 70 71 72 73 74 75 76 77
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 input, but got %d input.",
                          op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 Output, but got %d output.",
                          op_desc.Output("Out").size()));

N
nhzlx 已提交
78 79 80 81
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

82 83
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
84
    std::string pool_type =
85
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
86
    std::vector<int> ksize =
87
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
88
    std::vector<int> strides =
89
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
90
    std::vector<int> paddings =
91
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
92 93 94
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
95
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
96 97
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
98
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
99

N
nhzlx 已提交
100
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
101 102
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
103 104
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
105
    if (pool_type == "max") {
N
nhzlx 已提交
106
      nv_pool_type = nvinfer1::PoolingType::kMAX;
107
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
108
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
109
    } else if (pool_type == "avg") {
N
nhzlx 已提交
110
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
111
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
112
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
113
    } else {
114 115 116
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong pool op type, the trt do not support the %s pool type.",
          pool_type));
N
nhzlx 已提交
117 118
    }

N
nhzlx 已提交
119 120 121 122 123 124
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

125 126 127
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
128
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
129 130 131 132
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

133
    if (engine_->with_dynamic_shape()) {
134
      if (!adaptive && !global_pooling && !ceil_mode) {
135 136 137 138
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
139
        pool_layer->setAverageCountExcludesPadding(exclusive);
140
        layer = pool_layer;
141 142 143 144
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
        layer = engine_->AddPluginV2(&input1, 1, plugin);
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
163 164 165
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
166
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
N
nhzlx 已提交
167 168
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
169
      PADDLE_ENFORCE_NOT_NULL(
170 171
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
172
      auto output_name = op_desc.Output("Out")[0];
173 174 175 176 177 178 179
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
180
      if (test_mode) {
N
nhzlx 已提交
181
        engine_->DeclareOutput(output_name);
182
      }
N
nhzlx 已提交
183 184
      return;
    }
185

186
    if (!adaptive) {
N
nhzlx 已提交
187 188 189 190
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
191 192
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
193 194 195 196 197 198 199 200
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
201 202 203
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
204 205 206 207 208
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
209 210 211
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
212 213
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
214
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
215 216 217 218 219 220 221 222
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
223
      }
224 225 226 227
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
228 229 230 231
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
232
      layer = pool_layer;
233
    }
N
nhzlx 已提交
234
    auto output_name = op_desc.Output("Out")[0];
235
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
236 237 238 239 240 241 242 243 244
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);