multiclass_nms_op.cc 22.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/detection/nms_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
29 30 31
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
D
dangqingqing 已提交
32
    auto box_dims = ctx->GetInputDim("BBoxes");
33
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
34
    auto score_size = score_dims.size();
35

36
    if (ctx->IsRuntime()) {
37 38 39 40 41
      PADDLE_ENFORCE_EQ(score_size == 2 || score_size == 3, true,
                        platform::errors::InvalidArgument(
                            "The rank of Input(Scores) must be 2 or 3"
                            ". But received rank = %d",
                            score_size));
42
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
X
xiaoting 已提交
43 44
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3"
45
                            ". But received rank = %d",
X
xiaoting 已提交
46
                            box_dims.size()));
J
jerrywgz 已提交
47
      if (score_size == 3) {
48 49 50 51 52 53 54 55 56 57 58 59
        PADDLE_ENFORCE_EQ(
            box_dims[2] == 4 || box_dims[2] == 8 || box_dims[2] == 16 ||
                box_dims[2] == 24 || box_dims[2] == 32,
            true, platform::errors::InvalidArgument(
                      "The last dimension of Input"
                      "(BBoxes) must be 4 or 8, "
                      "represents the layout of coordinate "
                      "[xmin, ymin, xmax, ymax] or "
                      "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                      "8 points: [xi, yi] i= 1,2,...,8 or "
                      "12 points: [xi, yi] i= 1,2,...,12 or "
                      "16 points: [xi, yi] i= 1,2,...,16"));
J
jerrywgz 已提交
60 61
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
X
xiaoting 已提交
62 63 64 65 66 67
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input(BBoxes) must be equal to "
                "last dimension of Input(Scores), which represents the "
                "predicted bboxes."
                "But received box_dims[1](%s) != socre_dims[2](%s)",
                box_dims[1], score_dims[2]));
J
jerrywgz 已提交
68
      } else {
X
xiaoting 已提交
69 70
        PADDLE_ENFORCE_EQ(box_dims[2], 4,
                          platform::errors::InvalidArgument(
71 72
                              "The last dimension of Input"
                              "(BBoxes) must be 4. But received dimension = %d",
X
xiaoting 已提交
73
                              box_dims[2]));
74 75 76 77 78 79 80
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[1],
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input"
                "(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
                "But received box dimension = %d, score dimension = %d",
                box_dims[1], score_dims[1]));
J
jerrywgz 已提交
81
      }
82
    }
83 84
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
85 86 87 88 89
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
90 91 92
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
93
  }
D
dangqingqing 已提交
94 95 96 97 98

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
99
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
100
        platform::CPUPlace());
D
dangqingqing 已提交
101
  }
102 103
};

104 105 106 107 108 109 110 111 112
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
113 114 115 116 117 118 119 120 121 122
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
123 124 125
  }
}

126
template <typename T>
D
dangqingqing 已提交
127
class MultiClassNMSKernel : public framework::OpKernel<T> {
128 129 130
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
131 132
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
133 134 135
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
136 137
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
138 139 140 141 142 143 144 145 146 147 148 149 150 151
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
152
      for (size_t k = 0; k < selected_indices->size(); ++k) {
153 154
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
155 156 157
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
158 159 160
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
161 162 163 164
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
165 166 167
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
168
          }
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
184
  void MultiClassNMS(const framework::ExecutionContext& ctx,
185
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
186
                     const int scores_size,
187 188
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
189 190 191
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
192
    bool normalized = ctx.Attr<bool>("normalized");
193 194
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
195
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
196
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
197 198

    int num_det = 0;
199 200 201 202 203 204 205 206 207 208 209 210 211

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
212
      }
213 214 215
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
216 217
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
218
      num_det += (*indices)[c].size();
219 220
    }

221
    *num_nmsed_out = num_det;
222 223
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
224
      const T* sdata;
225
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
226
      for (const auto& it : *indices) {
227
        int label = it.first;
J
jerrywgz 已提交
228
        if (scores_size == 3) {
229
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
230
        } else {
231 232 233
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
234
        }
235
        const std::vector<int>& label_indices = it.second;
236
        for (size_t j = 0; j < label_indices.size(); ++j) {
237 238 239 240 241 242
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
243 244
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
245 246 247 248
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
249
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
250 251 252 253
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
254 255 256 257 258 259 260
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
261 262
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
263 264 265
    }
  }

J
jerrywgz 已提交
266 267
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
268
                        const std::map<int, std::vector<int>>& selected_indices,
269 270
                        const int scores_size, Tensor* outs,
                        int* oindices = nullptr, const int offset = 0) const {
J
jerrywgz 已提交
271
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
272 273
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
274 275 276 277
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
278 279 280
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
281 282 283
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
284 285 286
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
287
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
288 289 290 291 292
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
293
      for (size_t j = 0; j < indices.size(); ++j) {
294
        int idx = indices[j];
J
jerrywgz 已提交
295 296 297 298 299
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
300 301 302
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
303 304 305
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
306 307 308
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
309
        }
Y
Yipeng 已提交
310 311
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
312
        count++;
313 314 315 316 317
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
318 319
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
320
    auto* outs = ctx.Output<LoDTensor>("Out");
321 322
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
323
    auto score_dims = scores->dims();
324
    auto score_size = score_dims.size();
J
jerrywgz 已提交
325
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
326 327 328

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
329 330 331 332
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
333 334 335 336 337 338 339 340 341 342 343 344
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
345
      }
346 347 348 349 350
      std::map<int, std::vector<int>> indices;
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
351 352 353 354
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
355 356 357 358 359 360 361 362
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
363 364
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
365 366
      int offset = 0;
      int* oindices = nullptr;
367 368 369 370 371 372
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
373 374 375
          if (return_index) {
            offset = i * score_dims[2];
          }
376 377 378 379
        } else {
          auto boxes_lod = boxes->lod().back();
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
380 381 382
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
383
        }
384 385 386 387
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
388 389 390 391 392
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
393
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
394
                           score_dims.size(), &out, oindices, offset);
395 396 397 398 399 400
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
401 402 403
    if (return_index) {
      index->set_lod(lod);
    }
404 405 406 407
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
408
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
409
 public:
Y
Yu Yang 已提交
410
  void Make() override {
D
dangqingqing 已提交
411
    AddInput("BBoxes",
J
jerrywgz 已提交
412 413
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
414
             "[N, M, 4 or 8 16 24 32] represents the "
415 416
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
417
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
418 419
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
420
    AddInput("Scores",
J
jerrywgz 已提交
421 422
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
423 424 425
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
426 427 428 429
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
430
    AddAttr<int>(
431
        "background_label",
翟飞跃 已提交
432
        "(int, default: 0) "
D
dangqingqing 已提交
433 434
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
435
        .SetDefault(0);
D
dangqingqing 已提交
436 437
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
438 439
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
440 441 442
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
443
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
444
                 "score_threshold");
445
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
446
                   "(float, default: 0.3) "
D
dangqingqing 已提交
447
                   "The threshold to be used in NMS.")
448 449 450
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
451
                   "The parameter for adaptive NMS.")
452
        .SetDefault(1.0);
D
dangqingqing 已提交
453 454 455 456
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
457
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
458
                  "(bool, default true) "
J
jerrywgz 已提交
459 460
                  "Whether detections are normalized.")
        .SetDefault(true);
461 462 463
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
464 465 466 467 468 469
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
470 471 472 473
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
474
This operator is to do multi-class non maximum suppression (NMS) on a batched
475
of boxes and scores.
D
dangqingqing 已提交
476 477 478 479 480 481
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
482
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
483 484
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
485 486 487
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
488
means there is no detected bbox for this image.
489 490 491 492
)DOC");
  }
};

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
      ctx->SetOutputDim("Index", {box_dims[1], 1});
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
512 513 514
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

530 531 532 533
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
534 535 536 537
REGISTER_OPERATOR(
    multiclass_nms, ops::MultiClassNMSOp, ops::MultiClassNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dangqingqing 已提交
538 539
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
540 541 542 543
REGISTER_OPERATOR(
    multiclass_nms2, ops::MultiClassNMS2Op, ops::MultiClassNMS2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
544 545
REGISTER_OP_CPU_KERNEL(multiclass_nms2, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);