rnn_op.cu.cc 26.3 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/dynload/cudnn.h"

namespace paddle {
namespace platform {
class CUDADeviceContext;
struct CUDAPlace;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

class RNNDescriptors {
 public:
  RNNDescriptors(int seq_length, int batch_size, int input_size,
                 int hidden_size, int num_layers, float dropout_prob, int seed,
                 int weight_numel, cudnnRNNMode_t mode, bool is_bidirec,
                 bool is_test)
      : seq_length_(seq_length),
        batch_size_(batch_size),
        input_size_(input_size),
        hidden_size_(hidden_size),
        num_layers_(num_layers),
        dropout_prob_(dropout_prob),
        seed_(seed),
        weight_numel_(weight_numel),
        mode_(mode),
        is_bidirec_(is_bidirec),
        is_test_(is_test) {}

  template <typename T>
  void Create(const cudnnHandle_t &handle, const platform::Place &place,
              const std::vector<int> &sequence_length, size_t *workspace_size,
              size_t *reserve_size, framework::Tensor *dropout_state) {
    int numDirections = is_bidirec_ ? 2 : 1;
    cudnnDataType_t cudnn_type = platform::CudnnDataType<T>::type;

    // ------------------- cudnn x, y descriptors ---------------------
    std::vector<int> dims_x = {batch_size_, input_size_, 1};
    std::vector<int> strides_x = {input_size_, 1, 1};
    std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
    std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
    for (int i = 0; i < seq_length_; ++i) {
      x_descs_.emplace_back(x_desc_.descriptor<T>(dims_x, strides_x));
      y_descs_.emplace_back(y_desc_.descriptor<T>(dims_y, strides_y));
    }

#if CUDNN_VERSION >= 7201
    if (!sequence_length.empty()) {
      x_seq_desc_.descriptor<T>(seq_length_, batch_size_, input_size_, true,
                                sequence_length);
      y_seq_desc_.descriptor<T>(seq_length_, batch_size_,
                                hidden_size_ * numDirections, true,
                                sequence_length);
    }
#endif

    // ------------------- cudnn hx, hy, cx, cy descriptors----------
    std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
                                hidden_size_};
    std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
    init_h_desc_.descriptor<T>(dims_hx, strides_hx);
    init_c_desc_.descriptor<T>(dims_hx, strides_hx);
    last_h_desc_.descriptor<T>(dims_hx, strides_hx);
    last_c_desc_.descriptor<T>(dims_hx, strides_hx);

    // ------------------- cudnn dropout descriptors ---------------------
    size_t state_size;
92 93
    bool is_initialized = dropout_state->IsInitialized();
    if (!is_test_ && !is_initialized) {
G
Guo Sheng 已提交
94 95 96 97 98
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
      dropout_state->mutable_data<uint8_t>({static_cast<int64_t>(state_size)},
                                           place);
    }
99 100 101
    dropout_desc_.descriptor(handle, place, is_initialized, dropout_prob_,
                             is_test_ ? nullptr : dropout_state, seed_,
                             state_size);
G
Guo Sheng 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

// ------------------- cudnn rnn descriptors ---------------------
#if CUDNN_VERSION >= 6000
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
        handle, rnn_desc_.desc(), hidden_size_, num_layers_,
        dropout_desc_.desc(), CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, mode_,
        CUDNN_RNN_ALGO_STANDARD, cudnn_type));
#else
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
        rnn_desc_.desc(), hidden_size_, num_layers_, dropout_desc_.desc(),
        CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, mode_,
        cudnn_type));
#endif

#if CUDNN_VERSION >= 7201
    if (!sequence_length.empty()) {
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNPaddingMode(
          rnn_desc_.desc(), CUDNN_RNN_PADDED_IO_ENABLED));
    }
#endif

    // ------------------- cudnn weights_size ---------------------
    size_t weights_size_;
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
        handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
    PADDLE_ENFORCE_EQ(
        weights_size_, sizeof(T) * weight_numel_,
        platform::errors::InvalidArgument(
            "The cudnn rnn and setting weight size should be same."));
    // ------------------- cudnn weight descriptors ---------------------
    platform::DataLayout layout = platform::DataLayout::kNCHW;
    int dim_tmp = weights_size_ / sizeof(T);
    std::vector<int> dim_w = {dim_tmp, 1, 1};
    weight_desc_.descriptor<T>(layout, dim_w);
    // ------------------- cudnn workspace, reserve size ---------------------
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
        handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
        workspace_size));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetRNNTrainingReserveSize(
            handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
            reserve_size));
  }
  cudnnTensorDescriptor_t *x_descs() { return x_descs_.data(); }
  cudnnTensorDescriptor_t *y_descs() { return y_descs_.data(); }
#if CUDNN_VERSION >= 7201
  cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_.desc(); }
  cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_.desc(); }
#endif
  cudnnTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
  cudnnTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
  cudnnTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
  cudnnTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
  cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
  cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
  cudnnFilterDescriptor_t weight_desc() { return weight_desc_.desc(); }

 private:
  int seq_length_;
  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  float dropout_prob_;
  int seed_;
  int weight_numel_;
  cudnnRNNMode_t mode_;
  bool is_bidirec_;
  bool is_test_;
  std::vector<cudnnTensorDescriptor_t> x_descs_;
  std::vector<cudnnTensorDescriptor_t> y_descs_;

  platform::ScopedTensorDescriptor x_desc_;
  platform::ScopedTensorDescriptor y_desc_;
#if CUDNN_VERSION >= 7201
  platform::ScopedRNNTensorDescriptor x_seq_desc_;
  platform::ScopedRNNTensorDescriptor y_seq_desc_;
#endif
  platform::ScopedTensorDescriptor init_h_desc_;
  platform::ScopedTensorDescriptor init_c_desc_;
  platform::ScopedTensorDescriptor last_h_desc_;
  platform::ScopedTensorDescriptor last_c_desc_;
  platform::ScopedDropoutDescriptor dropout_desc_;
  platform::ScopedFilterDescriptor weight_desc_;
  platform::ScopedRNNDescriptor rnn_desc_;
};

template <typename T, typename Type>
bool is_continuous(const Type &weight_list) {
  bool continuous = true;
  for (size_t i = 0; i < weight_list.size() - 1; ++i) {
    auto *in_data = weight_list[i]->template data<T>();
    auto *in_after_data = weight_list[i + 1]->template data<T>();
    auto in_size = weight_list[i]->numel();
    bool temp = in_data + in_size == in_after_data;
    continuous = continuous && temp;
  }
  return continuous;
}

template <typename T>
void weight_to_tensor(const platform::Place &place, cudaStream_t stream,
                      const std::vector<const Tensor *> &weight_list,
                      Tensor *weight) {
  auto weight_data = weight->data<T>();
  int weight_offset = 0;
  for (size_t i = 0; i < weight_list.size(); ++i) {
    const T *in_data = weight_list[i]->data<T>();
    auto in_size = weight_list[i]->numel();

    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
                 weight_data + weight_offset,
                 BOOST_GET_CONST(platform::CUDAPlace, weight_list[i]->place()),
                 in_data, in_size * sizeof(T), stream);
    weight_offset += in_size;
  }
}

template <typename T>
void weight_to_tensor_list(const platform::Place &place, cudaStream_t stream,
                           std::vector<Tensor *> *weight_grad,
                           const std::vector<const Tensor *> &weight_input,
                           const Tensor *weight) {
  int weight_offset = 0;
  auto *weight_data = weight->data<T>();
  for (size_t i = 0; i < weight_input.size(); ++i) {
    auto in_size = weight_input[i]->numel();
    T *weight_grad_data = (*weight_grad)[i]->mutable_data<T>(place);
    const T *src = weight_data + weight_offset;

    memory::Copy(
        BOOST_GET_CONST(platform::CUDAPlace, (*weight_grad)[i]->place()),
        weight_grad_data, BOOST_GET_CONST(platform::CUDAPlace, weight->place()),
        src, in_size * sizeof(T), stream);
    weight_offset += in_size;
  }
}

template <typename T>
class RNNCudnnKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const Tensor *x = ctx.Input<Tensor>("Input");
    auto pre_state = ctx.MultiInput<Tensor>("PreState");

    Tensor *out = ctx.Output<Tensor>("Out");
    auto state = ctx.MultiOutput<Tensor>("State");
    Tensor *reserve = ctx.Output<Tensor>("Reserve");
    Tensor *state_out = ctx.Output<Tensor>("DropoutState");

    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    auto mode = ctx.Attr<std::string>("mode");
    cudnnRNNMode_t rnn_mode = CUDNN_LSTM;
    if (mode == "LSTM")
      rnn_mode = CUDNN_LSTM;
    else if (mode == "GRU")
      rnn_mode = CUDNN_GRU;
    else if (mode == "RNN_RELU")
      rnn_mode = CUDNN_RNN_RELU;
    else if (mode == "RNN_TANH")
      rnn_mode = CUDNN_RNN_TANH;
    else
      PADDLE_THROW(platform::errors::InvalidArgument(
          "rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
          "%s.",
          mode));

    bool is_test = ctx.Attr<bool>("is_test");
    int seed = ctx.Attr<int>("seed");
    if (!is_test) {
      int device_id =
          BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()).GetDeviceId();
      auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
      if (gen_cuda->GetIsInitPy() && seed == 0) {
        // If perform `manual_seed` in python and inner seed is not specified
        // (equals 0), use global generator generated seed.
        seed = static_cast<int>(gen_cuda->Random64());
      } else if (seed == 0) {
        // use random generated seed
        std::random_device rd;
        seed = rd();
      }  // else use `ctx.Attr<int>("seed")` specified seed
    }

    const T *x_data = x->data<T>();
    const T *init_h_data = pre_state[0]->data<T>();
    const T *init_c_data = nullptr;
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
    T *last_h_data = state[0]->mutable_data<T>(ctx.GetPlace());
    T *last_c_data = nullptr;
    if (rnn_mode == CUDNN_LSTM) {
      init_c_data = pre_state[1]->data<T>();
      last_c_data = state[1]->mutable_data<T>(ctx.GetPlace());
    }

    bool has_seq_length = ctx.HasInput("SequenceLength");
    std::vector<int> SequenceLength;
    if (has_seq_length) {
      auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
      SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
    }

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();

    int seq_length = x->dims()[0];
    int batch_size = x->dims()[1];
    int input_size = x->dims()[2];

    size_t workspace_size;
    size_t reserve_size;
    Tensor weight_whole;
    T *w_data = nullptr;
    auto place = ctx.GetPlace();
    auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
                      ctx.device_context())
                      .stream();
    auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
    auto weight_numel = std::accumulate(
        weight_list.begin(), weight_list.end(), 0,
        [](int64_t num, const Tensor *t) { return num + t->numel(); });
    bool continuous =
        is_continuous<T, std::vector<const Tensor *>>(weight_list);
    if (!continuous) {
      LOG_FIRST_N(WARNING, 2)
          << "If the memory space of the Input WeightList is not continuous, "
             "less efficient calculation will be called. Please call "
             "flatten_parameters() to make the input memory continuous.";
      weight_whole.mutable_data<T>({weight_numel}, place);
      weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
      w_data = weight_whole.data<T>();
      if (is_test) {  // maybe also reset small weights' ptr for training
        int offset = 0;
        for (size_t i = 0; i < weight_list.size(); ++i) {
          size_t len = weight_list[i]->numel();
          auto dim = weight_list[i]->dims();
          const_cast<Tensor *>(weight_list[i])
              ->ShareDataWith(
                  weight_whole.Slice(static_cast<int64_t>(offset),
                                     static_cast<int64_t>(offset + len)))
              .Resize(dim);
          offset += len;
        }
      }
    } else {
      w_data = const_cast<T *>(weight_list[0]->data<T>());
    }

    RNNDescriptors rnn(seq_length, batch_size, input_size, hidden_size,
                       num_layers, dropout_prob, seed, weight_numel, rnn_mode,
                       is_bidirec, is_test);
    rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
                  &reserve_size, state_out);

    framework::Tensor workspace_data_;
    workspace_data_.mutable_data<uint8_t>(
        {static_cast<int64_t>(workspace_size)}, ctx.GetPlace());

    auto *reserve_data = reserve->mutable_data<uint8_t>(
        {static_cast<int64_t>(reserve_size)}, ctx.GetPlace());

    if (is_test) {
      RNNInferece(has_seq_length, handle, seq_length, &rnn, x_data, init_h_data,
                  init_c_data, w_data, out_data, last_h_data, last_c_data,
                  &workspace_data_, workspace_size);
    } else {
      if (!has_seq_length) {
        // for train
        // This interface is used when the input/output is unpadded.
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardTraining(
            handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), x_data,
            rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
            rnn.weight_desc(), w_data, rnn.y_descs(), out_data,
            rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
            workspace_data_.data<uint8_t>(), workspace_size, reserve_data,
            reserve_size));
      } else {
#if CUDNN_VERSION >= 7201
        // for train
        // This interface is used when the input/output is padded.
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnRNNForwardTrainingEx(
                handle, rnn.rnn_desc(), rnn.x_seq_desc(), x_data,
                rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
                rnn.weight_desc(), w_data, rnn.y_seq_desc(), out_data,
                rnn.last_h_desc(), last_h_data, rnn.last_c_desc(), last_c_data,
                nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
                nullptr, workspace_data_.data<uint8_t>(), workspace_size,
                reserve_data, reserve_size));
#else
        PADDLE_THROW(platform::errors::Unavailable(
            "The padded input is supported by "
            "cudnnRNNForwardTrainingEx, but it only works when "
            "the version of cudnn is larger than 7.2.1"));
#endif
      }
    }
  }

  void RNNInferece(const bool &has_seq_length, const cudnnHandle_t &handle,
                   const int &seq_length, RNNDescriptors *rnn, const T *x_data,
                   const T *init_h_data, const T *init_c_data, const T *w_data,
                   T *out_data, T *last_h_data, T *last_c_data,
                   framework::Tensor *workspace_data,
                   const size_t &workspace_size) const {
    if (!has_seq_length) {
      // for inference
      // This interface is used when the input/output is unpadded.
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardInference(
          handle, rnn->rnn_desc(), seq_length, rnn->x_descs(), x_data,
          rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
          rnn->weight_desc(), w_data, rnn->y_descs(), out_data,
          rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
          workspace_data->data<uint8_t>(), workspace_size));
    } else {
#if CUDNN_VERSION >= 7201
      // for inference
      // This interface is used when the input/output is padded.
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNForwardInferenceEx(
          handle, rnn->rnn_desc(), rnn->x_seq_desc(), x_data,
          rnn->init_h_desc(), init_h_data, rnn->init_c_desc(), init_c_data,
          rnn->weight_desc(), w_data, rnn->y_seq_desc(), out_data,
          rnn->last_h_desc(), last_h_data, rnn->last_c_desc(), last_c_data,
          nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
          nullptr, workspace_data->data<uint8_t>(), workspace_size));
#else
      // CUDNN VERSION has to >=7.2.1
      PADDLE_THROW(platform::errors::Unavailable(
          "The padded input is supported by "
          "cudnnRNNForwardInferenceEx, but it only works when "
          "the version of cudnn is larger than 7.2.1"));
#endif
    }
  }
};

template <typename T>
class RNNGradCudnnKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *input = ctx.Input<Tensor>("Input");
    auto pre_state = ctx.MultiInput<Tensor>("PreState");
    auto weight_list = ctx.MultiInput<Tensor>("WeightList");
    auto *state_out = ctx.Input<Tensor>("DropoutState");
    auto *reserve = ctx.Input<Tensor>("Reserve");
    auto *out = ctx.Input<Tensor>("Out");
    // auto state = ctx.MultiInput<Tensor>("State");

    auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto state_grad = ctx.MultiInput<Tensor>(framework::GradVarName("State"));

    auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto pre_state_grad =
        ctx.MultiOutput<Tensor>(framework::GradVarName("PreState"));
    auto weight_grad_list =
        ctx.MultiOutput<Tensor>(framework::GradVarName("WeightList"));

    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    auto mode = ctx.Attr<std::string>("mode");
    cudnnRNNMode_t rnn_mode = CUDNN_LSTM;
    if (mode == "LSTM")
      rnn_mode = CUDNN_LSTM;
    else if (mode == "GRU")
      rnn_mode = CUDNN_GRU;
    else if (mode == "RNN_RELU")
      rnn_mode = CUDNN_RNN_RELU;
    else if (mode == "RNN_TANH")
      rnn_mode = CUDNN_RNN_TANH;
    else
      PADDLE_THROW(platform::errors::InvalidArgument(
          "rnn_mode should be LSTM, GRU, RNN_RELU or RNN_TANH, but received: "
          "%s.",
          mode));
    bool is_test = ctx.Attr<bool>("is_test");
    int seed = ctx.Attr<int>("seed");

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();

    auto place = ctx.GetPlace();
    auto weight_numel = std::accumulate(
        weight_list.begin(), weight_list.end(), 0,
        [](int64_t num, const Tensor *t) { return num + t->numel(); });
    bool continuous =
        is_continuous<T, std::vector<const Tensor *>>(weight_list);

    auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
                      ctx.device_context())
                      .stream();
    Tensor weight_whole;
    T *weight_data = nullptr;

    if (!continuous) {
      weight_whole.mutable_data<T>({weight_numel}, place);
      weight_to_tensor<T>(place, stream, weight_list, &weight_whole);
      weight_data = weight_whole.data<T>();
    } else {
      weight_data = const_cast<T *>(weight_list[0]->data<T>());
    }

    Tensor weight_grad;
    math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
    weight_grad.mutable_data<T>({weight_numel}, ctx.GetPlace());
    zero(dev_ctx, &weight_grad, static_cast<T>(0.0));
    T *weight_grad_data = weight_grad.data<T>();

    int offset = 0;
    for (size_t i = 0; i < weight_grad_list.size(); ++i) {
      size_t len = weight_grad_list[i]->numel();
      auto dim = weight_grad_list[i]->dims();
      weight_grad_list[i]
          ->ShareDataWith(weight_grad.Slice(static_cast<int64_t>(offset),
                                            static_cast<int64_t>(offset + len)))
          .Resize(dim);
      offset += len;
    }

527 528 529 530 531 532
    Tensor input_grad_value;
    if (!in_grad) {
      in_grad = &input_grad_value;
      in_grad->Resize(input->dims());
    }

G
Guo Sheng 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    auto *init_h_data = pre_state[0]->data<T>();
    // auto *last_h_data = state[0]->data<T>();
    auto *last_h_grad_data = state_grad[0]->data<T>();
    const T *init_c_data = nullptr;
    // const T *last_c_data = nullptr;
    const T *last_c_grad_data = nullptr;
    T *init_h_grad_data =
        pre_state_grad.size() != 0 && pre_state_grad[0]
            ? pre_state_grad[0]->mutable_data<T>(ctx.GetPlace())
            : nullptr;
    T *init_c_grad_data = nullptr;
    if (rnn_mode == CUDNN_LSTM) {
      init_c_data = pre_state[1]->data<T>();
      // last_c_data = state[1]->data<T>();
      last_c_grad_data = state_grad[1]->data<T>();
      init_c_grad_data =
          pre_state_grad.size() != 0 && pre_state_grad[1]
              ? pre_state_grad[1]->mutable_data<T>(ctx.GetPlace())
              : nullptr;
    }
    auto *out_data = out->data<T>();
    auto *out_grad_data = out_grad->data<T>();
    // maybe need check exist
    auto *in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());

    bool has_seq_length = ctx.HasInput("SequenceLength");
    std::vector<int> SequenceLength;
    if (has_seq_length) {
      auto *sequence_length = ctx.Input<Tensor>("SequenceLength");
      SequenceLength = operators::GetDataFromTensor<int>(sequence_length);
    }

    auto input_dims = input->dims();
    int seq_length = input_dims[0];
    int batch_size = input_dims[1];
    int input_size = input_dims[2];

    size_t workspace_size;
    size_t reserve_size;

    RNNDescriptors rnn(seq_length, batch_size, input_size, hidden_size,
                       num_layers, dropout_prob, seed, weight_numel, rnn_mode,
                       is_bidirec, is_test);

    rnn.Create<T>(handle, ctx.GetPlace(), SequenceLength, &workspace_size,
                  &reserve_size, const_cast<Tensor *>(state_out));

    framework::Tensor workspace_data_;
    workspace_data_.mutable_data<uint8_t>(
        {static_cast<int64_t>(workspace_size)}, ctx.GetPlace());
    const uint8_t *reserve_data = reserve->data<uint8_t>();

    if (!has_seq_length) {
      // This interface is used when the input/output is unpadded.
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardData(
          handle, rnn.rnn_desc(), seq_length, rnn.y_descs(), out_data,
          rnn.y_descs(), out_grad_data, rnn.last_h_desc(), last_h_grad_data,
          rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
          rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
          rnn.x_descs(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
          rnn.init_c_desc(), init_c_grad_data, workspace_data_.data<uint8_t>(),
          workspace_size, const_cast<uint8_t *>(reserve_data), reserve_size));

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardWeights(
          handle, rnn.rnn_desc(), seq_length, rnn.x_descs(), input->data<T>(),
          rnn.init_h_desc(), init_h_data, rnn.y_descs(), out->data<T>(),
          workspace_data_.data<uint8_t>(), workspace_size, rnn.weight_desc(),
          weight_grad_data, const_cast<uint8_t *>(reserve_data), reserve_size));
    } else {
#if CUDNN_VERSION >= 7201
      // for train
      // This interface is used when the input/output is padded.
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardDataEx(
          handle, rnn.rnn_desc(), rnn.y_seq_desc(), out_data, rnn.y_seq_desc(),
          out_grad_data, nullptr, nullptr, rnn.last_h_desc(), last_h_grad_data,
          rnn.last_c_desc(), last_c_grad_data, rnn.weight_desc(), weight_data,
          rnn.init_h_desc(), init_h_data, rnn.init_c_desc(), init_c_data,
          rnn.x_seq_desc(), in_grad_data, rnn.init_h_desc(), init_h_grad_data,
          rnn.init_c_desc(), init_c_grad_data, nullptr, nullptr,
          workspace_data_.data<uint8_t>(), workspace_size,
          const_cast<uint8_t *>(reserve_data), reserve_size));

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnRNNBackwardWeightsEx(
          handle, rnn.rnn_desc(), rnn.x_seq_desc(), input->data<T>(),
          rnn.init_h_desc(), init_h_data, rnn.y_seq_desc(), out->data<T>(),
          workspace_data_.data<uint8_t>(), workspace_size, rnn.weight_desc(),
          weight_grad_data, const_cast<uint8_t *>(reserve_data), reserve_size));
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "The padded input of rnn is supported by cudnnRNNBackwardDataEx, "
          "cudnnRNNBackwardWeightsEx, but it only works when the version "
          "of cudnn is larger than 7.2.1"));
#endif
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(rnn, ops::RNNCudnnKernel<float>,
                        ops::RNNCudnnKernel<double>);
REGISTER_OP_CUDA_KERNEL(rnn_grad, ops::RNNGradCudnnKernel<float>,
                        ops::RNNGradCudnnKernel<double>);