test_index_sample_op.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest


class TestIndexSampleOp(OpTest):
    def setUp(self):
        self.op_type = "index_sample"
        self.config()
        xnp = np.random.random(self.x_shape).astype(self.x_type)
        indexnp = np.random.randint(
            low=0, high=self.x_shape[1],
            size=self.index_shape).astype(self.index_type)
        self.inputs = {'X': xnp, 'Index': indexnp}
        index_array = []
        for i in range(self.index_shape[0]):
            for j in indexnp[i]:
                index_array.append(xnp[i, j])
        out = np.reshape(index_array, self.index_shape)
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def config(self):
        """
        For multi-dimension input
        """
        self.x_shape = (10, 20)
        self.x_type = "float64"
        self.index_shape = (10, 10)
        self.index_type = "int32"


class TestCase1(TestIndexSampleOp):
    def config(self):
        """
        For one dimension input
        """
        self.x_shape = (100, 1)
        self.x_type = "float64"
        self.index_shape = (100, 1)
        self.index_type = "int32"


class TestCase2(TestIndexSampleOp):
    def config(self):
        """
        For int64_t index type
        """
        self.x_shape = (10, 100)
        self.x_type = "float64"
        self.index_shape = (10, 10)
        self.index_type = "int64"


class TestCase3(TestIndexSampleOp):
    def config(self):
        """
        For int index type
        """
        self.x_shape = (10, 100)
        self.x_type = "float64"
        self.index_shape = (10, 10)
        self.index_type = "int32"


class TestCase4(TestIndexSampleOp):
    def config(self):
        """
        For int64 index type
        """
        self.x_shape = (10, 100)
        self.x_type = "float64"
        self.index_shape = (10, 10)
        self.index_type = "int64"


class TestIndexSampleShape(unittest.TestCase):
    def test_shape(self):
        import paddle.fluid as fluid
        import paddle

        # create x value
        x_shape = (2, 5)
        x_type = "float64"
        x_np = np.random.random(x_shape).astype(x_type)

        # create index value
        index_shape = (2, 3)
        index_type = "int32"
        index_np = np.random.randint(
            low=0, high=x_shape[1], size=index_shape).astype(index_type)

        x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
        index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
        output = fluid.contrib.layers.index_sample(x=x, index=index)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place=place)
        exe.run(fluid.default_startup_program())

        feed = {'x': x_np, 'index': index_np}
        res = exe.run(feed=feed, fetch_list=[output])


if __name__ == "__main__":
    unittest.main()