grad_clip.py 9.4 KB
Newer Older
R
Roc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from paddle.fluid.clip import ClipGradBase, _squared_l2_norm
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid import core, layers, framework
from paddle.distributed import collective
import six
import warnings
import copy


class ClipGradForMOEByGlobalNorm(ClipGradBase):
    r"""
    The Algrithm is the same as paddle.fluid.clip.ClipGradByGlobalNorm
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in 
    :math:`t\_list` , and limit it to ``clip_norm`` .
    
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
    
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
    
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
    
    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer`` 
    (for example: :ref:`api_paddle_optimizer_SGD`).

    The clipping formula is:

    .. math::

        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    Note:
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0. 
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

R
Roc 已提交
58 59 60 61 62
    Reference:
        https://github.com/laekov/fastmoe/blob/master/examples/megatron/clip-grad-v2.2.patch
        Git commit hash: 295a615aacce7e54a37e7935274ba15e901c78e4


R
Roc 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    Args:
        clip_norm (float): The maximum norm value.
        is_expert_param_func (function): a function to decide whether a param should be put into moe_params_grads
        moe_group (Group): group for moe experts communication.
        group_name (str, optional): The group name for this clip. Default value is ``default_moe_group``.

    Examples:
        .. code-block:: python
        
            import paddle

            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
            linear = paddle.nn.Linear(in_features=10, out_features=10, 
                                      weight_attr=paddle.ParamAttr(need_clip=True), 
                                      bias_attr=paddle.ParamAttr(need_clip=False))
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

            is_expert_func = lambda param: "expert_" in param.name
            clip = paddle.nn.ClipGradForMOEByGlobalNorm(clip_norm=1.0,is_expert_func, None)
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
    """

    def __init__(self,
                 clip_norm,
                 is_expert_param_func=None,
                 moe_group=None,
                 group_name="default_moe_group"):
        super(ClipGradForMOEByGlobalNorm, self).__init__()
        self.clip_norm = float(clip_norm)
        self.group_name = group_name
        self.moe_group = moe_group
        if moe_group is not None and moe_group.nranks > 1:
            assert is_expert_param_func is not None, \
                "When moe group size > 1, a function for selecting expert params must be specified."
        self.is_expert_param_func = is_expert_param_func

    def __str__(self):
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

    @staticmethod
    def get_l2_norm_pow(params_grads, sum_dtype=None):
        sum_square_list = []
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                continue
            merge_grad = g
            if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
            sum_square = _squared_l2_norm(merge_grad)
            if sum_square.dtype == core.VarDesc.VarType.FP16:
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)

        # all parameters have been filterd out
        if len(sum_square_list) + len(sum_square_list_fp16) + len(
                sum_square_list_fp32) == 0:
            return None, None
        assert sum_dtype in ["float64", "float32", None], \
            "sum's type must be float64/ float32 / None"
        if sum_dtype != "float64":
            sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
            global_norm_var_fp16 = layers.concat(sum_square_list_fp16)
            global_norm_var_fp16 = layers.reduce_sum(global_norm_var_fp16)
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
            global_norm_var_fp32 = layers.concat(sum_square_list_fp32)
            global_norm_var_fp32 = layers.reduce_sum(global_norm_var_fp32)
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
            global_norm_var_fp64 = layers.concat(sum_square_list)
            global_norm_var_fp64 = layers.reduce_sum(global_norm_var_fp64)
            global_norm_var.append(global_norm_var_fp64)
        global_norm_var = layers.concat(global_norm_var)
        global_norm_var = layers.reduce_sum(global_norm_var)
        return global_norm_var, sum_dtype

    @imperative_base.no_grad
    def _dygraph_clip(self, params_grads):
        normal_params_grads = []
        moe_params_grads = []

161
        # separate moe params from normal params
R
Roc 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        if self.moe_group is not None and self.moe_group.nranks > 1:
            for p, g in params_grads:
                if self.is_expert_param_func(p):
                    moe_params_grads.append((p, g))
                else:
                    normal_params_grads.append((p, g))
        else:
            normal_params_grads = params_grads

        # why to return sum_dtype?
        # we will call `get_l2_norm_pow` twice and the precisions may be different.
        # For convenience and simplification, we use sum_dtype directly instead of global_norm_var_normal.dtype
        global_norm_var_normal, sum_dtype \
            = self.get_l2_norm_pow(normal_params_grads)
        global_norm_var_moe = None
        if len(moe_params_grads) > 0:
            global_norm_var_moe, _ \
                = self.get_l2_norm_pow(moe_params_grads, sum_dtype)
            if global_norm_var_moe is not None:
                collective.all_reduce(
                    global_norm_var_moe,
                    op=collective.ReduceOp.SUM,
                    group=self.moe_group)

        if global_norm_var_normal is None and global_norm_var_moe is None:
            return params_grads
        elif global_norm_var_normal is None:
            global_norm_var = global_norm_var_moe
        elif global_norm_var_moe is None:
            global_norm_var = global_norm_var_normal
        else:
            if global_norm_var_normal.dtype != global_norm_var_moe.dtype:
                # compared with normal norm, moe norm is the later one,
                # so its precision is no lower than normal norm
                global_norm_var_normal = \
                    global_norm_var_normal.astype(global_norm_var_moe.dtype)
            global_norm_var = global_norm_var_normal + global_norm_var_moe

        params_and_grads = []
        global_norm_var = layers.sqrt(global_norm_var)
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm)
        clip_var = layers.elementwise_div(
            x=max_global_norm,
            y=layers.elementwise_max(
                x=global_norm_var, y=max_global_norm))
        for p, g in params_grads:
            if g is None:
                continue
            if getattr(p, 'need_clip', True) is False:
                params_and_grads.append((p, g))
                continue
            # TODO(wangxi): use inplace elementwise_mul
            clip_input = (clip_var.astype('float16')
                          if g.dtype == core.VarDesc.VarType.FP16 else clip_var)
            new_grad = layers.elementwise_mul(x=g, y=clip_input)
            params_and_grads.append((p, new_grad))
        return params_and_grads


ClipGradByGlobalNorm = ClipGradForMOEByGlobalNorm