uniform.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings

import numpy as np
from paddle import _C_ops
20 21 22 23 24 25 26 27 28 29 30 31
from paddle.distribution import distribution
from paddle.fluid import core
from paddle.fluid.data_feeder import (check_dtype, check_type,
                                      check_variable_and_dtype, convert_dtype)
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
from paddle.fluid.layers import (control_flow, elementwise_add, elementwise_div,
                                 elementwise_mul, elementwise_sub, nn, ops,
                                 tensor)
from paddle.tensor import arange, concat, gather_nd, multinomial


class Uniform(distribution.Distribution):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    r"""Uniform distribution with `low` and `high` parameters.

    Mathematical Details

    The probability density function (pdf) is

    .. math::

        pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
    [broadcasting](https://www.paddlepaddle.org.cn/documentation/docs/en/develop/beginners_guide/basic_concept/broadcasting_en.html) (e.g., `high - low` is a valid operation).

    Args:
        low(int|float|list|tuple|numpy.ndarray|Tensor): The lower boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
        high(int|float|list|tuple|numpy.ndarray|Tensor): The higher boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

          import paddle
          from paddle.distribution import Uniform

          # Without broadcasting, a single uniform distribution [3, 4]:
          u1 = Uniform(low=3.0, high=4.0)
          # 2 distributions [1, 3], [2, 4]
          u2 = Uniform(low=[1.0, 2.0], high=[3.0, 4.0])
          # 4 distributions
          u3 = Uniform(low=[[1.0, 2.0], [3.0, 4.0]],
                    high=[[1.5, 2.5], [3.5, 4.5]])

          # With broadcasting:
          u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

          # Complete example
          value_tensor = paddle.to_tensor([0.8], dtype="float32")

          uniform = Uniform([0.], [2.])

          sample = uniform.sample([2])
          # a random tensor created by uniform distribution with shape: [2, 1]
          entropy = uniform.entropy()
          # [0.6931472] with shape: [1]
          lp = uniform.log_prob(value_tensor)
          # [-0.6931472] with shape: [1]
          p = uniform.probs(value_tensor)
          # [0.5] with shape: [1]
    """

    def __init__(self, low, high, name=None):
J
Jiabin Yang 已提交
93
        if not _non_static_mode():
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            check_type(low, 'low',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Uniform')
            check_type(high, 'high',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Uniform')

        self.all_arg_is_float = False
        self.batch_size_unknown = False
        self.name = name if name is not None else 'Uniform'
        self.dtype = 'float32'

        if isinstance(low, int):
            low = float(low)
        if isinstance(high, int):
            high = float(high)

        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
            self.dtype = convert_dtype(low.dtype)
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
            if isinstance(
                    low,
                    np.ndarray) and str(low.dtype) in ['float32', 'float64']:
                self.dtype = low.dtype
            elif isinstance(
                    high,
                    np.ndarray) and str(high.dtype) in ['float32', 'float64']:
                self.dtype = high.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.low, self.high = self._to_tensor(low, high)
            if self.dtype != convert_dtype(self.low.dtype):
                self.low = tensor.cast(self.low, dtype=self.dtype)
                self.high = tensor.cast(self.high, dtype=self.dtype)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
J
Jiabin Yang 已提交
144
        if not _non_static_mode():
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            check_type(shape, 'shape', (list), 'sample')
            check_type(seed, 'seed', (int), 'sample')

        name = self.name + '_sample'
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.low + self.high, batch_shape + shape, self.dtype, 0.)
            uniform_random_tmp = nn.uniform_random_batch_size_like(
                zero_tmp,
                zero_tmp.shape,
                dtype=self.dtype,
                min=0.,
                max=1.,
                seed=seed)
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            uniform_random_tmp_reshape = nn.reshape(uniform_random_tmp,
                                                    output_shape)
            output = uniform_random_tmp_reshape * (
                zero_tmp_reshape + self.high - self.low)
            output = elementwise_add(output, self.low, name=name)
            return output
        else:
            output_shape = shape + batch_shape
            output = nn.uniform_random(
                output_shape, dtype=self.dtype, min=0., max=1.,
                seed=seed) * (tensor.zeros(
                    output_shape, dtype=self.dtype) + (self.high - self.low))
            output = elementwise_add(output, self.low, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        value = self._check_values_dtype_in_probs(self.low, value)
J
Jiabin Yang 已提交
191
        if _non_static_mode():
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
            # ensure value in [low, high]
            lb_bool = self.low < value
            ub_bool = value < self.high

            lb = _C_ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
                             value.dtype)
            ub = _C_ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
                             value.dtype)
            return nn.log(lb * ub) - nn.log(self.high - self.low)

        name = self.name + '_log_prob'
        lb_bool = self.low < value
        ub_bool = value < self.high
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_sub(
            nn.log(lb * ub), nn.log(self.high - self.low), name=name)

    def probs(self, value):
        """Probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: probability.The data type is same with value.

        """
        value = self._check_values_dtype_in_probs(self.low, value)
J
Jiabin Yang 已提交
221
        if _non_static_mode():
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            lb_bool = self.low < value
            ub_bool = value < self.high

            lb = _C_ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
                             value.dtype)
            ub = _C_ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
                             value.dtype)
            return (lb * ub) / (self.high - self.low)

        name = self.name + '_probs'
        lb_bool = self.low < value
        ub_bool = value < self.high
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_div((lb * ub), (self.high - self.low), name=name)

    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

            entropy(low, high) = \\log (high - low)

        Returns:
          Tensor: Shannon entropy of uniform distribution.The data type is float32.

        """
        name = self.name + '_entropy'
        return nn.log(self.high - self.low, name=name)