conv_fusion_op.cu 15.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
19 20
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
21
#include "paddle/fluid/platform/cudnn_helper.h"
Q
qingqing01 已提交
22

23
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
24 25 26 27

namespace paddle {
namespace operators {

H
hjchen2 已提交
28
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
29 30 31 32 33 34
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
35
using framework::AlgorithmsCache;
36
using framework::ConvSearchCache;
37

Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
51
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
65 66 67 68 69 70 71 72

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
    transformed_input_channel = *input;
    transformed_output = *output;
73 74
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
75
    const T* residual_data = residual ? residual->data<T>() : output_data;
76

77 78 79
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
80 81
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
133 134 135 136
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
              "But recieved the actual dimension = %d, shape = [%s].",
              rank, transformed_input_channel.dims()));
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
167
        conv_desc.descriptor<T>(padding_common, strides, dilations);
168 169
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(cudnn_conv_desc,
170
                                                         groups));
Q
qingqing01 已提交
171 172

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
173
        layout, framework::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
174
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
175
        layout, framework::vectorize<int>(transformed_output.dims()));
Q
qingqing01 已提交
176
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
177
        layout, framework::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
178
    // Now only support NCHW
179 180
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
181 182 183 184 185 186 187
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
188
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
189 190
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
191
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
192 193 194 195 196 197 198
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
199
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
200

201 202
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
203 204 205 206 207 208 209
#if CUDNN_VERSION >= 11000
    if (!platform::allow_tf32_cudnn) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(cudnn_conv_desc,
                                                         CUDNN_FMA_MATH));
    }
#endif  // CUDA_VERSION >= 11000
Q
qingqing01 已提交
210

211
    auto x_dims = framework::vectorize(transformed_input.dims());
Q
qingqing01 已提交
212
    auto f_dims = framework::vectorize(filter->dims());
213
    if (!exhaustive_search) {
214
#if CUDNN_VERSION >= 8000
215 216 217 218 219
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
220
      PADDLE_ENFORCE_CUDA_SUCCESS(
221
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
222
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
223 224 225
              cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count,
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
226 227 228 229 230 231
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, algo, &workspace_size_in_bytes));
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
232 233 234 235 236 237 238 239
#else
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
240
    } else {
241 242
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
243 244 245
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
246
        auto cudnn_find_func = [&](void* cudnn_workspace) {
247
          PADDLE_ENFORCE_CUDA_SUCCESS(
C
chengduo 已提交
248 249 250 251
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
252
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
C
chengduo 已提交
253
        };
254
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
255 256 257 258 259 260 261 262
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
263
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
264
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
265 266 267
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
268
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
269 270 271 272
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
273 274
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
275
      } else {
276
        auto dtype = platform::CudnnDataType<T>::type;
277
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
278
                                       dilations, 0, dtype, search_func);
Q
qingqing01 已提交
279 280 281 282
      }
      VLOG(3) << "choose algo " << algo;
    }

283 284 285
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
286
            cudnn_output_desc, algo, &workspace_size_in_bytes));
287 288 289 290 291 292 293
    PADDLE_ENFORCE_LE(
        workspace_size_in_bytes, workspace_size_limit,
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
            "to be less than the limit. But recieved: the actual workspace "
            "size = %d, limit = %d.",
            workspace_size_in_bytes, workspace_size_limit));
Q
qingqing01 已提交
294

N
nhzlx 已提交
295
    if ((activation == "identity") && (!residual)) {
296 297 298 299 300 301
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
302
      auto cudnn_func = [&](void* cudnn_workspace) {
303 304 305 306
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
C
chengduo 已提交
307 308
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
309 310 311
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnAddTensor(
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
          output_data));
312 313 314 315 316 317 318
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
319
      auto cudnn_func = [&](void* cudnn_workspace) {
320 321 322 323 324 325
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
326
                cudnn_act_desc, cudnn_output_desc, output_data));
C
chengduo 已提交
327 328
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
329
    }
Q
qingqing01 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
348 349 350 351
        PADDLE_THROW(platform::errors::Unimplemented(
            "Input with batch size greater than 1 is unsupported. The recieved "
            "batch size is %d, Input's shape is [%s].",
            x_dims[0], framework::make_ddim(x_dims)));
Q
qingqing01 已提交
352 353
      }
    }
Q
qingqing01 已提交
354 355
  }
};
D
Dang Qingqing 已提交
356
#endif
Q
qingqing01 已提交
357 358 359 360

}  // namespace operators
}  // namespace paddle

H
hjchen2 已提交
361
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
362 363 364
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
365
#endif