test_inference_model_io.py 5.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

M
minqiyang 已提交
19
import six
D
dzhwinter 已提交
20
import numpy as np
21
import paddle.fluid.core as core
22

23 24 25
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
26
from paddle.fluid.compiler import CompiledProgram
27 28
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.io import save_inference_model, load_inference_model
D
dzhwinter 已提交
29
from paddle.fluid.transpiler import memory_optimize
30 31 32 33 34 35 36 37


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
38 39 40 41 42 43 44 45

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
46
            avg_cost = layers.mean(cost)
47 48 49

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
50 51 52 53 54 55

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
56
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
57
            tensor_x = np.array(
58
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
59
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
60 61 62 63 64 65 66

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
67 68 69 70
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
71

M
minqiyang 已提交
72
        six.moves.reload_module(executor)  # reload to build a new scope
73 74 75 76 77 78 79 80 81 82
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
83
        actual = outs[0]
84 85 86

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
87 88
        print("fetch %s" % str(fetch_vars[0]))
        self.assertTrue("scale" in str(fetch_vars[0]))
89 90 91
        self.assertEqual(expected, actual)


D
dzhwinter 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model2"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
112
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
113 114


T
tangwei12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model3"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog])
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])


146 147
if __name__ == '__main__':
    unittest.main()